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Abstract—In this paper, the variable structure control
problem for a class of uncertain stochastic systems with time-
varying delay is investigated. A new concept of the subordinated
reachable property of the sliding motion is introduced. The
variable structure control law is then proposed to ensure that the
sliding motion is subordinated reachable. And a sufficient
condition for mean square asymptotical stability of the sliding
motion is given. A numerical example is presented to demonstrate
the effectiveness of the obtained results.
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1. INTRODUCTION

The variable structure control (VSC) theory has been made
great progress since it was proposed in the 1950’s [1-3]. Owing
to its easy design, simplicity of implementation and strong
robustness properties against matched disturbances, VSC is a
successful control method and has been used in various
applications [4-5]. Recently, the VSC approach has been
extended to stochastic control systems [6-10]. In [8], by using
the equivalent control method, the variable control problem of
stochastic systems with time-varying delay has been researched
and a sliding mode controller has been designed. However, to
eliminate the stochastic term in the sliding motion equation, the
rather strong constitutive hypotheses on the system’s model
and the constraint structure are needed. In this paper, the
variable control problem of stochastic systems with time-
varying delay is investigated. We show that the obtained results
hold under less stringent hypotheses. And this is of primary
importance for application purpose. This is essentially done by
introducing a notion of the subordinated reachable property of
the sliding motion, which practically describes conditions of
reachable property of the sliding motion by means of the mean-
square convergence of sliding manifold.

This is essentially done by introducing a notion of the
subordinated reachable property of the sliding motion, which
This paper is organized as follows. Section 2 describes the
system model and gives main lemmas. Section 3 designs the
sliding mode controller. In section 4, the sliding manifold is
established and the definitions of reachability are given.
Meanwhile, the sufficient conditions of the sliding motion
reachability are obtained. Section 5 discusses the stability of
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the sliding motion. Simulation results are given in Section 6.
Finally, Section 7 presents some conclusions.

For convenience, we give the following notation:

denotes the 2-norm of a vector or its induced matrix norm, and
, denotes the I-norm of a vector. Obviously, we have

||0(||S||05||1 for Vaoe R" . For a real symmetric matrix M ,
M > 0 denotes that matrix M is positive define. / represents
an identity matrix of appropriate dimensions. max(+) and
rank (+) = represent the maximum eigenvalue and the rank of a
matrix, respectively. (,F,(E),,,,P) is a complete probability

1202
space with Q the sample space, F the o —algebra of subsets
of the sample space, (F,),,,c the natural filtration and P the

120
probability measure. E denotes the expectation operator with
respect to probability measure P.

II.  THE SYSTEM MODEL DESCRIPTION AND MAIN LEMMAS

Consider the uncertain time-varying delay stochastic
systems

de(t) =[ (4+ A (1)) (1) + (4, +Ad, (1)) x(1-7(0)) (1)
+B(u(e)+ 1 (x(1).1)) Jdr +] Cx (1) + C,x(1 = 7(1)) Jdao()
with the initial condition
x(1)=9(t), te[-7,0] (2)

where x(t)e R" is the state, u(¢)e R" is the control input,

and a)(t ) is a one-dimensional Brown motion. 4€ R™" ,

A, e R”™ , BeR™ , CeR™ ,C,e R™ are known real
constant matrices, AA(f)e R™ and A4, (t)e R™ are

unknown time-varying matrices representing system parameter
uncertainties. 7(¢) is the time-varying delay satisfying

0<7()ST <00 (3)
where 7>0 is the known real constant. ¢(¢) is a known

continuous function. f (x(t),t) € R" is an unknown nonlinear

function satisfying
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£ (). < Bl (0)] )
where >0 is a known constant.

B
Suppose that B :[Blj has full column rank

2

anddet(B,) %0, where B e R"""" , B, e R™" . Thus we can

0

m

1 —-B B
choose an invertible matrix 77 =[ n=m 2 J such

0
that7™'B = (B J . By the state transformation 7y (¢) = x(¢) , Eq.
2
(1) can be turned into

dy(e)=[ (77 AT +T7A4(1)T) (1)
+(T7'4,T+T7'M4, ()T) y(t-17(1))

+[§J(u(x)+f(T1y(,),,)ﬂd, (5)

AT CTy(ewr ™ C Ty (t-7(1)) |da(),

1 _ A1 A11 A12
where 77 AT = A= ,
Az A21 4,

T7'AA(1)T = AA(t) = [AA

T IA 7= Ad _ Adl [Adll Ad12j
Aar A A ’
AA4, (t
T7'Ad, (£)T = Ada (1) = () :
Ad,, (1)

ZI,ZdI,AAl (t),AAdl ([),El,Edl € R(nim)xn
Zz,Zdz,AA (l),AA (l‘),Ez,Edz [S Rmxn,
An:Adn:Cn:CdneR ) A12’Ad12’C12’Cd12€R e

mxm mx(n—m)
A215A225 Ad22 5C22 5Cd22 €R AdZIJCZIJC ZIGR b

Y (1), 3 (t=7(1))e R"™, 3, (1), ,(t—7(r))e R".

Further, Eq. (5) can be rewritten as

dy, (¢) 4,y (£) ¥4, y, (A4, (2) y (t1F 4,0, (=2 (1))
+ A3, (t=7(1)) + Ay, (1) (=7(1)) | de
+[Cuy, (£)+Coy, (1 )+Cg,11y1 (t-7(1))
s (1=7(1)) Jdo (6)
dv, (6) =[ A (1) +4,0, (1) + AAz(t) (1)+ A4y (1-7(1))
+A,,v,(t=7(2))+ Ay, (1) y(t =7 (£) HByu ()
o) |de4{ oo, (£1+Caays (1)

+C 0, (t—T(t))+C“2y2 (z—r(z))}dw(z)
As usual, we assume that the uncertainties satisfy the following
conditions:

(A4 (t) A4, (t)=EF()(H, H,) O

+Bny

and
(AAZ (1) A, (t)):EzF ()(H, H,,)- ®)
H,,H,(i=12) are

ai?

Suppose that matrices E, (i=12),
known constant matrices. F, (¢)(i=1,2) are unknown time-

varying matrices satisfying

Fl(t)F ()<, i=12. ©)

i

Next, we give two Lemmas.
Lemma 1 1f F” (t)F(t)<1I,then

2X'F(1)Y<X'X+Y'Y, X,Ye R" (10)
Lemma 2" Let p, q and ¥ be constant satisfying 0< p<y.
If
V(e)s=w (1) +plV|+q.te(t,.B), (1)
then
V(t)S|I{0|exp(—/1(t—to))+q[1,l€ [t:.8), (12)
where

V(t)e C([t,—7.81.R"), V| =supy oV (t+6)
and A is unique position solution of equation A=y — pe*
III.  THE DESIGN OF THE SLIDING MODE CONTROLLER

Select matrix K =(K, K,)e R™ with K e Rnm)
and K, € R™" . Suppose that det(K,)#0,

rank (K" ) = rank(KT ‘Hi)

and

rank(KT) = rank(KT |Hadl) ,
where i =1,2 . Then it is easily to select matrices H. and
Hoie R e RU - satisfying

H,=Hu.K and H,, = HuK , (13)



wherei =1,2. We select the switch function as follows:
S(t)=Ky(t)=K,y (t)+K,»,(t). (14)
So it follows
¥, (1)=K,'S(t) =K, 'K,y (t) - (15)

We design the variable structure control law of system (1)
as follows:

u(t)=(K,B,) [K T Ax(t)+KT "' 4,x (¢~ 7(t))

+B]|K,B, || (¢)|senS (¢) + &S (tyresgn (S (1)) |

%KZBZ)l%g)z(zE;K;s(t)wHﬂs(t)w
2| EKIS (1) HEK.B. )1;%(

+“ﬁad2S(t—T(t)) ’

HaoS (1)

Eadls(t —T(t))

(1) (16)

where k>0, e=diag(¢

(H S, (¢ ,Sz(t),...,Sm(t)T,

&,....6, >0,

sgn S (¢ [sgnS (1).sgn S, (¢), -,sgnS, (I)}T’
and
(oL er s e s )

(17)

IV. THE SLIDING MODE REACHABILITY
Select the sliding manifold of the system (1) to be
S(#)=0 .For the system (1), the motion on the sliding
manifold S(t)zO -is called as sliding motion. In order to

describe the arrival extent to sliding motion of the system (1),
we introduce the following definition:
Definition 1 Consider variable structure control systems (1). If

for the state trajectory x(7,7,,x,) -tracking any
place(¢,,x,)€ R" xR", there always exists finite time T>0-
and B([s (1)) =0
then we call the sliding motion of the system (1) to be
reachable. If there exists finite time 7 >0 -such that
E(|s(¢)]) =0 and ]E(||S(t)||2) —0(t > +e) ,>T+1,, then

such that E("S(I)") =0 ~when t > T +1, ,

we call the sliding motion the system (1) to be subordinated
reachable.

Theorem 1 For the variable structure control stochastic
system (1), its sliding motion is subordinated reachable.

Proof Suppose that the state trajectory x(¢) tracks any
place(#,,x,)€ R xR".. From (6) and (14) it follows

dS (t)=K,dy, (¢)+K,dy, (¢)

=K, (4, (£)+ 4,0, (1)) + K, (A, (1) + Ay, (1)) + K, A4, (1)

+K,A4y(t)+K ( Ay (£=7(2))+ 4,051 ( )))

K (A (12(0)) + A, 2217 (1)) + KA, (1) v (12 (1))
() (1= () + Ko B (1) + KB, f (T (0).1)

+[K, ( Hyl(t)+C12y2( )+ K, (Coyyy (2)+Coyy, (1))

K, (Cd”yl (I_T(t)) + G (t_T(t)))+K2 (Cd21Y1 (t_T(t))
+Cyys (1=7(1))) Jd@(2).

=ls)l=

+K,A4,,

Denote that ‘{’I(S(t))

formula, one obtains

A} t)) = mST (t)[Kl (A11Y1 (t)+A12Y2 (t))

S"(¢)S(t) >t Using Ito

+K, (Ayy, (£)+ Apy, (1)) + KA4, (2) y (1) + K, A4, (1) y (1)
+K1(Adllyl(t—T(t))+Ad12y2(t—T(t)))+K2(AdZIyl(t—T(t))
+Ad22y2(t—2'(t)))+K1AAd1(t)y(t—T(t))

+K,Ad, (t)y(t—T(t))+Kszu(t)+Kszf(Ty(t),t)J
+[K( (1) + 4,0, (1) + K, (Couyy (1) + Cp, (1))

(
(M([ 7()+ Cooyn (1-2(1)))
()4 Coura(t-2()]
(

J 11)’1( )+Cy, (t))

( aa \1—
L I, S()s"
[sl s of

+K ( 21y1( )+szJ’z(t))+K1(Cd11Y1(t_T(t))

+Cinys (t_T(t))>+K2 (Cd21Y1 (t_T(t))+Cd22y2 (t_T(t))):| '
From (7), (8) and (13), one obtains o
ST () KAy (1) =S (¢) K\ EF (£) HuS (1),

) K,
(t)K AAzJ’( ) ST( )KzEze (I)E”S(I)=
S" (1) KA, (6) y(1=7() = 8" () K EF (1) HanS (1= 7 (1)),
and S” (1) K,A4,, (1) y(t—7(1))
=8" (t)K,E,F, (t)Haa (1) S (t—17(1)) .
Based on (9) and Lemma 1, one obtains

ST(t)K,E,F, (1) HaS (t) < %ST (1)K, EETKTS(1)

+%ST(t)ﬁ;ﬁa1S(t),
ST (t) K, E,F, () HaxS (1) %ST (1)K, E,ETKIS (1)

+%ST (t)HaHaS (1),



SR BV oS (1-2(0))< 357

%Sr(,_T(,))Ffﬁdﬁadls(r—r(r))

(1) K\E E/ K[ S(1)

and

ST(0) K By (1 a2 (1) S (-7 (1)) < %ST(t)KzEzEzTKZTS(t)

+%ST(l—T(I))ﬁaszﬁaﬁS(l—T(I)) :
Further from (16) and (17) one obtains

L, (S(0) <7

——[K Cy(t)+KCuy(t-

t)esgn(S (1)K, B,u,(t)

||S ||
T(t))} (K Cy(t)+KCdy(t—T(t)):|

" 8" (¢)esgn(S(¢)) € —€,

1
T
sl

where €

min

(e, (s()
EY,(S(1)-E¥,(S(1)) S =€, (1=1,) -
Then we can select a constant
t; <E|S(t)]/em. <|KTIE]0(0)|/e..

=min{¢,i=1,2,...,m}. Using Ito formula obtains

=EL(¥,(S(1)))<-¢

min 2

which implies that

such that
E[S(t)|=E(¥,(S(2)=0.t21,+¢,.
Denote that ¥ ( (t)) S’ (t)S(t) .

easily obtain

Similarly, we can

LY, (S (1)) <—k¥,(S(2))-

and

Il
o

,(5(2)))

fim E(JS () = fim B
The proof is complete.

V. STABILITY OF THE SLIDING MOTION

Assume that P is the positive solution of the matrix
equation

A P+PA =—1

n—m 2

where A1 = A, + A, —( 4, + 4,,,) K;'K, . Denote that

72(1_3||P(A411 A Ky K || ||PA12K;1||_||PA412K;1||

(18)
o 4Pl -k K )/ (P

= 1P -4k )| -
2
calPllc,, ok k).

n=[paks 4] +alpllc.k:

20

Py o5 |+ [Fa [+ 4P| o[

)

Definition 2 If for each £ >0 there exists a constant §(&) > 0

such that sup E||(1)(t)||2 <d(e), E”x(t, (0)”2 <&, t>0, then
—7<t<0

the system (1) is said to be mean-square stable at the
equilibrium.
Definition 3 If the systems (1) is said to be mean-square stable
at the equilibrium and [1l)r+rblo E"x (t,¢ " =0, then the system (1)
is said to be asymptotically mean-square stable at the
equilibrium.

If the sliding motion of systems (1) is reachable (or
subordinated reachable), one obtains E”S (t)" =0 based on the
definition (1). Obviously, the motions confined in the manifold
E[|S(¢)] =0 are described by (1). (1) is called as the sliding

motion equation. Here we can see that the sliding motion
equation (1) contains the stochastic term. Next we study the
stability of sliding motion equation (1).

Theorem 2 If the sliding motion of system (1) is subordinated
reachable and 0 < ¢ < ¥, then the sliding motion of variable

structure control systems (1) is asymptotically mean-square
stable at the equilibrium.

Proof Substituting (15) into the first form of (6) one obtains
dy, (1) =[ (4, - 4,K5'K, ) 3, (1) + 4,K5"5 (1)
z(1))]dr

J{(c11 ~CLK;'K, ) 3, (£)+ CLK;'S (1)

+Ad12K;1S(t_T(I)) +A4, (I)J’(t_

+(Con=CunKy K ) 3 (=7 (1)) +C, K5 'S (- 7(1)) [do()
Select the following Lyapunov function

¥ (3 (1) =2 () Py, (1)
Using Ito formula, one obtains
LY (3, (1) ==o (0) 3 (6)+ 20 (6) P( Ay~ 4,,K'K))
(yl(t—r(t))—yl(t))+2y1’(t)P[AnK*IS(t)+AA1(t)y(t)
A, K5 (=2 (1) et () (=2 (1)) |4 (G =CKS K, Yy (1)
+C,K;'S (1) +(Cppy = C, K, 'K )yl(t z(1))
+C,, K58 (1=7(1)) ] P(C = Cuks 'K ) 3, (1) + CoK3'S (1)

+(Cd11_Cd12K;1K1 )yl(t—T(t))+Cd12K;1S(t—T(t)):|.
Using (7), (9) and Lemma 1, one obtains



2y (6)PAA () y (1) =2y (1) PEF, (1) H ¥ (1)
SJ’1T(I)PElElTPT)ﬁ(t)+yT(t)HaTlHa1Y(t)
0.

al

<[EP[ | () +[

Similarly, one obtains

257 (0) P, (1) y (= (1)) <[ A [ (O o[ [ (= ()] -
Therefore, we can obtain

L (3, (1) <=2 (0 (0)) + ¥ (3 (1= 2(0)))

+(HPA12K2’1 M

A[Pas ||

Hal

ek st

2

CedPlcank s -2 ()] -

adl

Denote that [EW,|=sup,_,, E¥(» (1+6))
the subordinated reachability of the sliding motion, we obtain
E”S(t)"2 —0(t—>+) . So for Ve>0 |,

. According to

there
exists ¢, >1,+7 such that E"S(t)"2 <& when >, Here

0=2Ag/2n , A>0 is unique solution of the equation

A=y—pe™ . Since(E‘~I"(y1 (t))), = EL‘~I"(y1 (t)), one obtains

(% (1)) <

—7E¥ (3 (1)) + B¥ (1 (1-7(1))) +4 »
Ae .
where g = EY .Thus it follows from lemma 2 that

E¥ (5, (1)) <

Selectt” =t +zln . Then it follows

E¥(y (1)) < Sl >t

t\JIm

+E-¢
2
Thus it follows E¥ (y1 (t)) — 0(f — +o0), that is,
E|y, (t)||2 — 0 — +oo).
Since E||y, (¢)| =E[[K;'S (1)~ K5 Koy, (o)
<2k [ et (o) 2l & [l (f

then one obtains E”y2 (t)"2 —0(f = 4oo) . Furthermore it
follows

Elly(e) <E|w (0) +E[y, (0)] = 0(r = +e0).

Thus E”x(t)"2 — 0(t = +eo) . The proof is complete.

VI. NUMERICAL EXAMPLE

Consider the uncertain stochastic systems (1) with
-10 15 -2 1
A= P Ad = P
06 05 -3 3
-02 0 02 0.1
= N Cd = N
0.1 03 -04 0.25

4. sin(77t)+1.6cos(7mt)

AA(t) =

ycos(li"m) += > sin(137¢)

/Ssm 77rt +/5c0s 77rt
A6cos 137[[ +%8sm 137[1 ’

%sin(77rt) +1%cos(7m)
%cos(l3m)+%sin(l3m)

%sin(77zt)+%cos(7m) J
%cos(13ﬁ1)+%8sin(l3m) ’

f(x<f>af){3?28}3:[?]

and the initial value conditions:

x, (1)=(51)" =0.05,x, (1) =

with —0.1<7<0. For convenience, we select constant delay

04, (t) :L

—(2t-0.5)°

. . 10
T (l‘ ) =0.1 and the state transformation matrix 7 :[0 lj'
Choose #=0.6 ,K =(5 5/3),e=5and kK =0.4. From (14)
and (16), it follows that the switching function
s(t)=5x (¢t)+5/3x,(t) and the variable structure control law

u () = 06[ 49, (1483333, (£ }-15x,(+-0.1 }HO0x, (£-0.1)
(1)) +04S(t )+0.1sgn(s(t))]—123365S(z)

|| ||2

+||0.3333x1 t—0.1)+0.9167x2 (t=01)?).

e IISgn

(||—08333 (1) + 05, (1)

It is easy to certify that the conditions of theorem 1, 2 are
satisfied. Simulation results are provided in fig. 1-3. Fig.1

indicates the time response of Variables”s(t)” . We can see that
the sliding motion is substituted reachable. Fig. 2 and 3 are
trajectories of state x (). It is seen that the sliding motions are
asymptotically mean-square stable (in probability).
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Fig. 1 Time response of variables ||S(t)||
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Fig.3 Trajectories of state x2(t)
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VII. CONCLUSION

The variable structure control problem of a class of
uncertain stochastic systems with time-varying delays is under
study. A sliding mode control law has been synthesized such
that the sliding motion has subordinated reachability.
Furthermore, under the condition of subordinated reachability,
a sufficient condition for the mean-square stability of sliding
motion has been proposed. The results obtained hold under
some rather less stringent constitutive hypotheses, which will
be helpful to the application in engineering practice. The results
obtained are supported by a numerical example.
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