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Abstract—To solve the problem of on-line dynamic planning 
of mobile robots in unknown environments, inspired by the 
mechanism of idiotypic network hypothesis, a hybrid immune 
network algorithm (HINA) is proposed. To improve the planning 
efficiency of immune network algorithm (INA) and realize 
optimal on-line dynamic obstacle avoidance, a new adaptive 
artificial potential field (AAPF) method is presented by using 
modified potential field. The vaccine is extracted according to the 
planning results based on AAPF method, and the instruction 
definition of robot is initialized through vaccine inoculation, 
which improve the planning efficiency of INA. When the robot 
meets with moving obstacles during the path planning, the AAPF 
method is used for the optimal dynamic obstacle avoidance. 
Simulation results are presented to verify the effectiveness of the 
proposed algorithm in unknown environments. 
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I. INTRODUCTION 
Dynamic planning is one of the most difficult tasks for 

autonomous mobile robots in unknown environments, and 
there are no effective solutions now.  Cao et al. [1] used an 
evolutionary artificial potential field algorithm to solve the 
dynamic path, but it brings local minimum problem easily. Hu 
et al. [2] proposed a knowledge based GA for dynamic path 
planning, but the calculation is bigger and the real-time 
performance of system is worse.  

In recent years, much attention has been focused on the 
artificial intelligence algorithms. Inspired by the biological 
immune system, the artificial immune system (AIS) is used 
gradually in path planning for its properties of self-
organization, self-learning and immunological memory. Li et 
al. [3] presented an immune genetic algorithm for path 
planning through crossover, mutation and vaccine inoculation 
operators. Ishiguro et al. [4] [5] designed a behavior controller 
based on the idiotypic network hypothesis. Luh et al. [6] 
proposed a reactive immune network and applied it to 
intelligent mobile robot learning navigation strategies in 
unknown environments. The available research results based 
on AIS indicate that the studies mainly focus on the static 
environments, while few studies have paid attention to the 
dynamic environments. Wang et al. [7] proposed an obstacle-
avoiding planning method based on artificial immune 
algorithm. The method realized dynamic planning by adding 
expected direction design and adaptive learning design, 
however the obstacle-avoiding manner wasn’t the optimal, and 
the robot couldn’t actively avoid moving obstacles. 

In this paper, a hybrid immune network algorithm is 
presented to solve the on-line dynamic path planning in 
unknown environments. To decrease the reliance of immune 
network on initial condition and realize the optimal dynamic 
obstacle avoidance, a new adaptive APF method is proposed by 
building new position and velocity potential field, and used in 
the following two aspects: first, the vaccine is extracted 
according to the planning results based on the AAPF, and the 
INA is initialized through vaccine inoculation; secondly, the 
AAPF method is used to actively avoid moving obstacles. For 
the abundance rule database will improve the planning 
efficiency, our algorithm includes two parts: one is learning 
algorithm for rule database, the other is on-line dynamic 
planning algorithm. In this paper, we proceed as follow: 
Section II provides a description of proposed artificial immune 
system. Section III gives the basic principle of AAPF. Section 
IV presents the HINA, including main operators, learning 
algorithm for rule database, and on-line dynamic planning 
algorithm. The experiments and analyses are described in 
Section V. Finally, section VI states some conclusions. 

II. ARTIFICIAL IMMUNE SYSTEM 

 
Figure 1.  Jerne’s idiotypic networks 

Biological immune system is a highly complicated system. 
At present, the commonly accepted theories of immunity are: 
clonal selection theory of immunity and idiotypic network 
hypothesis. The latter is proposed by Jerne in 1973 [8] [9]. The 
idea of Jerne’s is schematically shown in Fig. 1. From the 
figure we can see that the immune network is formed through 
interaction of stimulation and suppression among B cells, 
antigen epitope, antibody idiotope and antibody paratope. Each 
antibody does not exist independently in the biological body, 
but is bound with other antibodies. The antigen epitope can not 



         

only be identified by other antibodies, but the antibody idiotope 
can also be identified by other antibodies. 

                     
Figure 2.  Structure of omni-directional mobile robot 

Artificial immune system (AIS) is the simulation of 
biological immune system (BIS). In the proposed AIS, an 
omni-directional mobile robot, equipped symmetrically with 
eight sensors around as shown in Fig. 2, is adopted and 
regarded as a B lymphocyte (B cell), the sensors coded from 1 
to 8 are regarded as the phagocytes, the detecting distance of 
sensor is divided into two degrees: near and far, the 
environment surrounding the robot is regarded as antigen, the 
antigen epitope is the environment coding composed of 
obstacle information and goal information, the obstacle 
information is coded according to direction angle and distance, 
and the goal information is only coded according to direction 
angle. The antigen Ag is defined as follows: 
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The action strategy of robot is regarded as antibody. The 
antibody idiotope is composed of obstacle information AbOχ  

and goal information AbGχ . They are coded as the antigen is 
coded. The antibody paratope is the eight moving instruction 
set C of robot. The antibody Ab is defined as follows: 

),,( CAb AbGAbO χχ=  (2) 

Where, C = {a,b,… ,h}, and the element of the set denotes 
forward, left forward, right forward, left move, right move, left 
back, right back, back respectively. 

Fig. 3 is the model of path planning based on immune 
network. The main idea of path planning is: the moving trail of 
robot is described with a series of antibodies (i.e., antibody 
network) according to the stimulation and suppression 
between antigen and antibody. The connection among 
antibodies is not invariable, and an antibody can reach other 
antibodies, which depends on the environment surrounding the 
robot and instruction definition of the robot. In the figure, the 

thicker the line delegating the definition is, the more correct 
the instruction is. The essence of path planning is to find an 
inner figure composed by antibodies, and the figure describing 
the moving trail of robot is the best.  

 
Figure 3.  Model of path planning based on immune network 

III. ADAPTIVE APF METHOD 
APF was proposed by Khatib in 1986[10]. Traditional APF 

was suitable for the static environment. To solve the avoidance 
in dynamic environments, a series of improved methods were 
presented [1] [11] [12], however the planning path has the local 
wandering, and wasn’t smooth. In this paper, we propose a 
new adaptive APF method based on traditional APF by 
building new position and velocity potential field. The 
proposed method solves the active avoidance well. To simplify 
the analysis, we make the following assumptions: 

Assumption 1: The position )(tpr  and velocity )(tvr of 
robot at time t  are known. 
Assumption 2: )(tpo and )(tvo  are the position and 
velocity of obstacle at time t , which can be accurately 
measured on-line. 
Assumption 3: The goal is a fixed point in the path whose 
position gp  is known. 

A. Attractive Potential Function 
For the goal is a fixed point, the attractive potential is 

defined as a function of the relative distance between the robot 
and target. The function is presented as follows: 

),(
2
1)( 2

gratt pppU ξρ=                      (3) 

Where, ξ  denotes the scalar positive parameter.  
The virtual attractive force is defined as the negative 

gradient of the attractive potential in terms of position. 

)()( pUpF attpatt −∇= ),(),( grgr pppp ρξρ ∇−=  



         

 RGrg nξρ=           (4) 

Where ),( grrg ppρρ = , RGn  is the unit vector 
pointing from the robot to the goal. 

B. Repulsive Potential Function 

        
Figure 4.  Correlation of position and velocity between the robot and obstacle 

The repulsive potential function is constructed according to 
the single moving obstacle model. Fig. 4 is the correlation of 
position and velocity between the robot and obstacle. From the 
figure, we can see that the possibility of collision depends 
upon two variables: one is the relative position between the 
robot and obstacle, the other is the relative velocity in the 
direction from the robot to the obstacle. In this paper, a new 
repulsive potential function is defined as follows: 
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Where, )()(),( tptppp oror −=ρ  is the Euclidean 
distance of relative position between the robot and target, 

)()(),( tvtvvv oror −=ρ  is the Euclidean distance of 
relative velocity between the robot and target, ϕ  is the scalar 
positive position parameter, ζ is the scalar positive velocity 
parameter, 0ρ  is the influence range of obstacle, and minρ is 
the allowable shortest distance between the robot and obstacle. 
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Where, ),( orro ppρρ = , θρ cos),()( orRO vvtv = . 

Similar to the definition of attractive force, the new 
repulsive force is defined as the negative gradient of the 
repulsive potential in terms of position. 
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Where, ROn  is the unit vector pointing from the robot to 

obstacle. 
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Substituting (8) into (7), we have 
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The force analysis of robot in potential field is shown in 

Fig. 5. 

 
Figure 5. Force analysis of robot in potential field 



         

IV. INA BASED ON AAPF FOR PATH PLANNING 

A. Main Operators 
1) Antibody / Antigen Affinity Operator 

In the HINA for path planning, the environment matching 
(i.e. the stimulation and suppression between antigen and 
antibody) is used to search antibodies, and the matching rate is 
evaluated by affinity of antigen / antibody. The affinity Agb  
is defined as follows: 

)()( AbGAgGAbOAgOAgb −•−=    (13) 

2) Instruction Choosing Operator  
In the HINA, an antibody can reach other antibodies, and 

the state transition of antibody depends on the choice 
probability of instruction. In this paper, the instruction 
choosing operator is defined as follows: 
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Where, α  is enlightening factor of instruction definition, 
β  is the goal enlightening factor, )(tiη  is the instruction 

definition, and )(tqi  is the goal enlightening function of i th 

instruction. The )(tqi  is defined as follows: 

ldid
tqi +∆−∆
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1)(  (15) 

Where, )(id∆  is the variation of distance between the 
robot and goal after the robot transits according to i th ( Ci ∈ ) 
instruction, l  represents the adjusting coefficient, and 0>l . 

In this paper, the selection of instruction is carried out on a 
roulette-wheel manner, which not only guarantees the choice 
feasibility of instruction but also guarantees the possibility of 
small probability affair. 

3) Instruction Definition Operating Operator 
In this paper, the definition operating operator includes 

three parts: the definition encouraging function, definition 
forgetting function and definition punishing function. 

When the robot finishes a search, the definition of 
executing instructions should be encouraged, and the 
definition of non-executing instructions should be forgotten. 
The definition encouraging function is defined as follows: 

Ltt /)1()( µηη +−=  (16) 

Where, µ  is the encouraging factor, L  is the length of 
feasible path after planning.  

The definition forgetting function is defined as follows: 

)1()( −⋅= tt ηγη  (17) 

Where, γ  is the forgetting rate. 

At the same time, if the wandering appears during the path 
planning, the definition of corresponding executing 
instructions should be punished according to (16), which will 
provide opportunity to other antibodies in the same 
environment. In this paper, the strategies of retracing and 
instruction definition punishing are proposed. The detailed 
operations are as follows: 

First, the robot retraces Nb steps until the front obstacles 
are far away or there are no obstacles in front of robot from the 
point of wandering, then the corresponding instruction 
definitions are punished. The instruction definition punishing 
function is defined as follows: 

                    )/11()1()( mtt mm −∗−= ηη          (18) 

Here, )1(  bNmm ≤≤  is the retracing step.  

4)  Vaccine Extraction and Inoculation Operator 
If there is no any prior knowledge, the initial instruction 

definition of new antibody is Ni /1=η ( N  is the number of 
instruction of an antibody), namely the choice probability of 
each instruction is equal. To avoid absolute random transition 
of the robot and improve the searching efficiency of immune 
network, the planning results based on AAPF are taken as prior 
knowledge, and the initial instruction definition of new 
antibody is initialized through vaccine extraction and 
inoculation. The concrete operating sequences are as follows: 

Step 1 Confirm a new antibody. 

Step 2 Calculate the attractive force and repulsive force of 
the robot based on AAPF method. 

Step 3 Calculate the deflexion direction of the robot 
according to the resultant virtual force. 

Step 4 Calculate the angers between deflexion direction 
and all moving directions of instructions. 

Step 5 The instruction with minimal anger is given the 
maximal instruction definition, then the instruction is taken as 
center, and other instructions are given the definition 
symmetrically with equal weights. 

In our experiment, according to the increasing sequence of 
angers, the initial definitions of eight instructions are given 
{0.4 ， 0.2 ， 0.2 ， 0.08 ， 0.08 ， 0.015 ， 0.015 ， 0.01} 
respectively. 

B. Learning Algorithm for Rule Database 
Step 1 Choose learning examples and initialize 

parameters: ξ ,ϕ , ζ , 0ρ , minρ , α , β , l µ ,γ . 

Step 2 Recognize antigen and judge whether the robot 
wanders. If not, go to Step 4. 

Step 3 Carry out the strategies of retracing and instruction 
definition punishing, update the rule database, and go to Step 
2. 

Step 4 Look for a matching antibody according to (13) in 
rule database. If exists, go to Step 6. 



         

Step 5 Produce a new antibody according to the antigen, 
finish vaccine extraction and inoculation, and write in rule 
database. 

Step 6 Choose a instruction which won’t result in collision 
according to (14) (15) from the matching antibody or new 
antibody. 

Step 7 Execute the chosen instruction. 

Step 8 Judge whether the robot reaches the goal. If not, go 
to Step 2. 

Step 9 Update the antibodies in rule database according to 
(16) (17), and end.  

C. On-Line Dynamic Planning Algorithm 
Step 1 Initiate the task. 

Step 2 Obtain environmental information of robot, and 
judge whether there are moving objects within the influence 
range of obstacle. If there is none, go to Step 4. 

Step 3 Execute the optimal dynamic avoidance by 
applying AAPF method, and go to Step 2. 

Step 4 Look for the matching antibody in the rule database 
according to the antigen. If exists, go to Step 6. 

Step 5 Produce a new antibody according to the 
environment, finish the vaccine extraction and inoculation, and 
write it in rule database. 

Step 6 Choose a instruction, whose definition is the most 
and which won’t result in collision, from the matching 
antibody or new antibody. 

Step 7 Execute the chosen instruction and judge whether 
the robot wanders. If so, the strategies of retracing and 
instruction definition punishing are carried out and the rule 
database is updated, otherwise, go to the next step. 

Step 8 Judge whether the robot reaches the goal. If not, go 
to Step 2, otherwise update rule database and end. 

V. SIMULATION RESULTS AND ANALYSIS 
To confirm the validity of our proposed method in section 

IV, two experiments are carried out as follows: 

A. Learning Experiments  for Rule Database 
For the abundance rule database will improve the planning 

efficiency, we carry out a series of learning experiments to 
achieve rules in different environments. The parameters of 
algorithm are: 50=ξ , 1=ϕ , 15=ζ , m40 =ρ , 

m2.0min =ρ , 2=α , 2=β , 01.0=l , 5=µ , 1.0=γ , 
Fig. 6 is the simulation of six typical learning environments. 
The robot learns 30 times in each environment. In the figure, 
the lines with symbol “ ● ” denote all feasible antibody 
networks, the line with “■” denotes the best path. From the 
figure, we can see that the robot has the properties of self-
learning, self-organization and find the way in all kinds of 
complicated environments. Through the above learning, the 
robot will achieve abundant rules, which will  improve the on-
line planning efficiency. 

   
                                (a)                                                   (b) 

   
(c)                                                   (d) 

           
(e)                                                    (f) 

Figure 6. Simulation of six typical learning environments 

B. On-Line Dynamic Planning 
To show the effectiveness of  INA based on AAPF in 

dynamic environments, we have the dynamic obstacle-avoiding 
experiment with MATLAB7.0 on an Intel Pentium IV 
2.99GHz computer with 512MB RAM. The simulation 
environment is shown in Fig. 7 where there are two dynamic 
obstacles and several static obstacles including concave 
obstacle. The partial parameters of environment are shown in 
TABLE I. 

TABLE I.  PARTIAL PARAMETERS OF ENVIRONMENT 

Dynamic Obstacles 
       Parameters Robot 

D_obs1 D_obs2 
Goal 

start Time (s) 0 7 7   0 

initial Position (m) [0,4]T [6.4,6.8]T [6.4,1.2] T [20,4] T 

velocity (m/s) [0.4,0]T [-0.40,0.55] T [-0.05,-0.29] T [0,0] T 



         

                            
(a)                                                   (b)   

 
(c) 

Figure 7. Simulation of path planning in a dynamic environment: (a) t = 
11s; (b) t = 16s; (c) the whole path planning 

At first, the robot sets off from point [0, 4]T and executes 
on-line dynamic planning by getting matching antibody or 
vaccine extraction and inoculation. When the robot enters the 
influence of D_obs1 and D_obs2 at t = 7.5s and t = 8.5s 
respectively, it executes the optimal dynamic obstacle-avoiding 
planning by applying AAPF method. For the obstacle D_obs1 
is much faster than the robot, the robot actively detours the 
D_obs1 from its back according to the relative position and 
velocity between them. Fig. 7 (a) is the obstacle-avoiding state 
at t = 11s. As to the obstacle D_obs2, the robot actively detours 
it from its front as shown in Fig. 7(b). Fig. 7(a) and (b) clearly 
show how the robot quickly avoids two moving obstacles with 
the optimal manner. When the robot escapes from the influence 
range of moving obstacles, it plans the path again according to 
the matching between antigen and antibody or the vaccine 
extraction and inoculation. When the robot enters the influence 
of concave obstacle at t=32s, it escapes the local minimum 
successfully through the immunological memory and matching 
between the antigen and antibody, and reaches the goal finally. 
The whole path planning is shown in Fig. 7(c). 

TABLE II.  CONTRAST OF DYNAMIC PLANNING AMONG THREE 
ALGORITHMS 

Methods 
Planning Performance HINA INA GA 

calculation time by computer (s) 0.97 1.23 12.13 

length of optimal path (m) 23.60 25.12 23.25 

TABLE II is the contrast of dynamic planning among three 
algorithms (i.e., HINA, INA [7] and GA [2]). The main 
parameters of INA are the same as in [7]. The population size 
of GA is 20, crossover probability is 0.8, and mutation 
probability is 0.1. From the table, we can see that the 
calculation time of GA is longer than HINA and INA for its 
large calculation, the time of HINA is the shortest for its high 

convergence based on vaccine extraction and inoculation. The 
planning length of GA is the shortest for its global search. The 
length of INA is the longest for the robot can’t choose the 
optimal avoidance manner to avoid the moving obstacles. The 
length of HINA is shorter than INA for active obstacle 
avoidance based on AAPF. All in all, the proposed HINA 
based on AAPF has the better performance than other two 
methods. 

VI. CONCLUSIONS  
Inspired by the mechanism of idiotypic network hypothesis, 

a novel immune network algorithm based on AAPF method is 
presented to solve the on-line dynamic path planning in 
unknown environments. According to the simulation 
experiments, we can draw the following conclusions: (1) The 
adaptive APF method is an effective method, which is useful 
for the initialization of INA and optimal dynamic avoidance; 
(2) The characteristics, such as stimulation and suppression 
between antigen and antibody, vaccine extraction and 
inoculation, immunological memory, etc. solve the on-line 
dynamic planning well in unknown environments. 
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