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Abstract—This paper presents a new fast histogram 
matching algorithm for tracking the position and 
orientation of robots without the help of any odometers. 
Histogram avoids extracting geometrical primitives from 
the sensor data, acts independently from odometers, and is 
easy to be implemented. Here, the authors employ it to 
analyze laser scan data. A new concept named 
“hierarchical histogram structure” is introduced for 
constructing and matching histograms. This structure 
makes full use of the information in a laser scan and 
speeds up the histogram matching to a satisfying level. 
Computational complexity analysis and experiments show 
the feasibility of the new algorithm both mathematically 
and factually. 
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I.  INTRODUCTION 
Self-localization is an important research field in robotics. 

Usually, self-localization is the base of map building and self-
guidance. A fast and precise localization helps robots to act 
smartly and wisely. Researchers have proposed many 
approaches for self-localization. Some of them use the data 
from inertial navigation sensors, such as odometers, 
inclinometers and compasses, to localize robots [1-2]. This 
kind of methods is called dead reckoning. Unfortunately dead 
reckoning often leads to accumulation of drift errors. Some 
researchers localize their robots using landmarks [3]. This 
strategy needs prior information about the environment, so it is 
not available in unknown environments. Others present 
algorithms which can achieve the goal of self-localization 
without odometers [4]. Map matching is one of these 
algorithms. By comparing two local maps which are 
constructed with the sensor data sampled at two adjacent 
places, map matching estimates the orientation and translation 
differences between them. If we know the initial position, we 
can localize all the sample points by adding up the orientation 
and translation differences. This strategy is available in 
unknown environments and works independently from 
odometers, so it plays a more and more important role in self-
localization.  

Map matching has several variants for matching laser scans. 
These variants use different mathematical tools and act 

diversely. Cox [5] forms a cost function using the distances 
from points to segments, and computes the orientation and 
translation shifts when the cost function is minimum. The 
segments are extracted from a preconcerted reference scan. 
Each point in the other scan is assigned to a target, and the 
target is the nearest segment in the reference scan. Then the 
cost function is the sum of all the distances between the points 
and their targets. The Cox algorithm is easy to be understood, 
but it has to extract geometrical primitives from the sensor 
data and has to compute inverse matrices. So Cox doesn’t fit 
unstructured environments and has much difficulty in 
operating maps with a large quantity of points. Other than Cox, 
IDC [6] introduces correspondence pairs to overcome the 
embarrassment in unstructured environments. It chooses two 
strategies to find the correspondence points, and uses iteration 
to search for the best orientation and translation estimations. In 
the two strategies, one is good at getting orientation values, 
and the other is accomplished in determining translation 
values. IDC takes the long points of them and fuses the two 
strategies into a perfect “dual” algorithm. Iteration guarantees 
the precision of IDC algorithm, but slows down the calculation 
process. Also, finding the correspondence pairs is a 
bothersome task. Histogram is another good choice for 
unstructured cases. Instead of extracting geometrical 
primitives from the raw data, this approach stores the 
geometrical information in the angle and translation 
histograms. Correlation, not cost functions, is the main 
mathematical tool to carry out the matching step. Constructing 
histograms is much easier than finding correspondence points, 
and the computational complexity is irrelative to the number 
of scan points. So compared with Cox and IDC, histogram has 
innate excellent qualities. 

Histogram was first used to match laser scans in 1994 [7]. 
After that, this method has been widely used in navigation, 
localization and mapping [8-9]. Recently, Michael Bosse and 
Jonathan Robert developed a histogram approach to recognize 
a previously mapped area in a large global map [10]. The 
histogram algorithm seems mature enough and all we need to 
do is just to use it in different cases. The authors don’t think so. 
Through some smart improvement, we can make histogram 
acquire an even better performance. In this paper, hierarchical 
histogram structure is employed to match the histograms in a 
more efficient way. This brand new structure reforms the 



 

         

histograms to pay more attention on the interested sections, 
and simplifies the traversing matching process to a small 
number of correlation operations. As a result, the calculation 
speed of histogram algorithm is enhanced greatly and the new 
histogram algorithm becomes more qualified in real-time 
applications.  

This article is organized as: Section 2 explains the 
construction of angle histogram and translation histogram for 
laser scans; Section 3 introduces hierarchical histogram 
structure and makes a rough comparison between the new 
structure and the original one; Section 4 demonstrates the 
feasibility of the new histogram algorithm with experiments; 
Section 5 sums up the new algorithm and gives a draft plan of 
the future work. 

Figure 1.  A single laser scan 

II. CONSTRUCTION OF HISTOGRAMS 
Histogram gives an easy and fast solution for orientation 

and position estimation. Other than geometrical primitive 
algorithms, histograms don’t extract geometrical primitives 
from the laser scan data, but combines the geometrical 
information into the histograms. Then making good use of the 
connotative clues to construct histograms for accurate 
orientation and translation estimation becomes very important. 
To illuminate the histogram construction strategy clearly, the 
authors will divide this section into two parts: angle histogram 
construction and translation histogram construction.  

Figure 2.  Adjacent vector angle 

A. Angle Histogram 
A laser scan is a serial of numbers which stand for the 

distances from the scanner to the nearest obstacles in given 
orientations. In general, the distances queue according to their 
corresponding orientation angles in an average ascending order. 
Figure 1 shows a single scan obtained by SICK LMS-221 laser 
scanner, and this laser scanner can give a scan of 180 degrees.  

The process of constructing an angle histogram is the 
process of extracting geometrical information from the scan 
data. Finding the angles and filling them into the angle 
histogram is the main task in this step. An angle histogram is 
divided into 360 intervals. Each interval stands for a degree and 
is a counter of the angles which lie in it. We can call each angle 
an “adjacent vector angle”, because it is cornered by a 
benchmark vector defined beforehand and a vector which links 
two adjacent scan points. We can understand the process of 
finding adjacent vector angles well with the help of Figure 2. 
The segment dash lines stand for the radials coming from the 
scanner. Pi  denotes a scan point, which probably means an 
obstacle point. The segment that links P3  and P4  is an 
adjacent vector, the point dash line is the benchmark vector, 
and naturally, angle β  is an adjacent vector angle. In the same 
way, we know α  is an adjacent vector, too. Now, computing 
the values of adjacent vector angles remains nothing but simple 
vector operations. After getting the value of an adjacent vector 
angle, we can insert it into the angle histogram easily. For 
example, if we have an adjacent vector angle of 30 degrees, we 
insert it in by pulsing 1 to the counter of the corresponding 
histogram interval that contains the angle of 30 degrees. An 
example of angle histogram can be found in Figure 3. 

Figure 3.  Angle histogram 

B. Translation Histogram 
After using the angle estimation to correct the angle drift 

between two sets of laser scan data, there comes the next phase 
of histogram estimation: translation estimation. Similar to the 
angle estimation, translation histograms need to be constructed 
first. In fact, translation histogram is an honest display of the 
distribution for measurement points in x- or y- direction. It is 
formed by a number of intervals which is mainly determined by 



 

         

the maximum error of the measurement. The number of 
intervals can be obtained using the full range and the interval 
size. While the angle histogram has a changeless interval 
number of 360 and a circular sequence, translation histogram 
has an alterable number of intervals based on the features of the 
laser scanner and a linear sequence. Meanwhile, translation 
histogram not only has positive part but also has minus part, 
just like a coordination axis. These discrepancies make the 
construction process of translation histogram a little different 
from that of angle histogram. When we construct a translation 
histogram, we first determine the number of intervals and the 
positions of the positive part and minus part. Then we project 
the scan point into a coordination to get its values in x- or y- 
direction. To insert a measurement point into a translation 
histogram, we should find the interval incepting the point first. 
The equation used to compute the interval index is 

 ( ) ( ) \i iIndex X abs X size=  (1) 

where “\” is the modulo operator. If iX  is positive, we insert 
the point into the positive part of the translation histogram, 
otherwise, we insert it into the minus part. Figure 4 gives us an 
example of translation histograms. The two histograms are 
constructed using the same scan data as Figure 1. Here, we let 
the interval 0.02 meters long, and each histogram has more 
than 800 intervals when the full range is 8.183 meters. Both of 
the two histograms have minus parts in the left and positive 
parts in the right.  We can see the minus part of the y 
histogram is empty, just because the scan set has not minus 
components. 

Figure 4.  Translation histograms 

III. MATCHING HISTOGRAMS 

A. Crosscorrelation 
Crosscorrelation is the basic mathematic tool for the 

matching step. The definition function of crosscorrelation is 
given through 

 1( ) lim ( ) ( )
2

x

x
x

C y f x g x y dx
x→∞

−

= +∫ . (2) 

In this function, the integration result ( )C y  is a measurement 
for the correlation between two stochastic functions, ( )f x  and 

( )g x , regarding the phase-shift y. ( )C y  will have an absolute 
maximum at s , when ( )f x  equals ( )g x s+ . Based on this 
point, we can estimate the drift between two histograms by 
searching for the phase shift leading to the maximum value of 
the crosscorrelation function. (2) is the expression for 
continuous cases. Histograms of laser scan data are discrete, so 
the crosscorrelation formula needs to be transformed into a 
discrete form. The new formula could be written as 

 1 2
1

( ) ( ) ( )
n

i
C j h i h i j

=

= +∑ i  (3) 

in which 1h  and 2h  are the histograms of two laser scans, n is 
the number of intervals in a histogram. (3) is the most useful 
function in histogram matching. 

B. Hierarchical Histogram Structure 

Figure 5.  Hierarchical histogram structure 

Histogram matching is a process of finding the proper 
orientation and translation warps between two histograms. The 
warps will generate a translation matrix. If the matrix can 
correct one scan to make it have almost the same position and 
orientation as the other one, we say that the match is successful. 
Generally, we use traversing method to search for the warps. 
That is, if the histograms to be matched both have n intervals, 
the traversing method needs to compute at least n 
crosscorrelations and then finds the biggest value among them. 
As we all know, traversing method is a good method counting 
in all the information of the histograms. But sometimes, our 
instinct tells us that we don’t have to act in such a complicated 
way. Most histograms have uneven distribution among their 
intervals, and we can usually find out where the most important 
parts are and then conclude the approximate drift between two 
similar histograms easily. There must be other approaches 



 

         

which can find the maximum crosscorrelation more effectively 
than the traversing method. 

The authors present a new method using hierarchical 
histogram structure to fulfill the searching task. Hierarchical 
histogram structure means that there are at least two pairs of 
histograms belonging to different layers to do the matching 
action. Different layers stand for different interval resolutions. 
Taking the angle histogram for an example, a higher layer may 
have an interval resolution of 10 degrees, and a lower layer 
may have an interval resolution of 1 degree. Then the matching 
step could be divided into two parts. First, we match the pair of 
histograms in the higher layer to find the most interested 
subarea, usually a big interval containing several small 
intervals. Second, we concentrate on the allocated subarea, 
traverse in it, and search for the maximum crosscorrelation of 
histograms in the lower layer. In this way, we can get rid of the 
meaningless computations for the unimportant subareas. As a 
result, the matching step is speeded up greatly. Figure 5 shows 
a two-layer hierarchical structure. We can see that the 
interested subareas become distinguish in the higher-layer 
histogram. 

C. Computational Complexity Analysis 
There is no doubt that the new matching approach using 

hierarchical histogram structure is faster than the ordinary 
traversing approach. But a simple presentation is not 
reasonable enough. A rigorous mathematic demonstration 
obviously speaks louder. Now we prove the validity of the 
hierarchical histogram structure through computational 
complexity analysis. 

For convenience, we use the original histograms as the 
lower layer ones. Higher-layer histograms are constructed 
based on the lower-layer ones, and we call the new constructed 
histograms rough histograms. Assuming the original 
histograms both have n  small intervals, the rough histograms 
both have N  subareas(big intervals), we know that each 
subarea of the rough histogram has /n N  small intervals. Let’s 
consider the ordinary traversing method. To find the biggest 
crosscorrelation value, we need to get all the crosscorrelation 
values, so the computation of crosscorrelation needs to be 
repeated for n  times. When calculating a crosscorrelation 
value, we have to do n  times of multiplication and n  times of 
addition. Then we can infer the computational complexity of 
the ordinary traversing method is 

 22ordinaryO n= . (4) 

Because the rough histogram has N  subareas, using the result 
of ordinary traversing method, we can know the computational 
complexity of finding the interested subarea is 2(2 )O N . To 
determine the final maximum crosscorrelation, /n N  times of 
crosscorrelation calculation are inevitable, and that takes 

22 /n N  times of operation. Summing up all the operations, we 
have the total computational complexity of the new approach 
as 

 2 22 2 /newO N n N= + . (5) 

We can demonstrate the decrease in calculation with an 
instance angle histogram. An angle histogram usually has 360 
small intervals. Let the rough histogram has 36 subareas. In this 
example, n  is 360 and N  equals 36. Substituting n  into (4) 
and N  into (5), we obtain that ordinaryO equals 259200 and newO  
equals 9792. The hierarchical histogram structure method cuts 
down 96% unimportant operations from the traversing 
approach. That’s a great progress. In practice, the improvement 
differs according to the environment conditions. The authors 
will give some experiment results to show the availability of 
the new approach. 

IV. EXPERIMENTS 

A. Computational Facility 
In this paper, the authors dedicate most attention to 

simplifying the matching process and saving the computational 
time. Here, we prove the convenience of the new algorithm 
through some experiments. We use LMS 221 laser scanner as 
the main sensor to collect scan data. All programs of the 
experiments are coded in the MATLAB7.0 environment. The 
computer has an AMD Athlon(tm) 64 processor with a working 
frequency of 2.20GHz. 

First, an experiment about the angle match is carried out. In 
this experiment, we use the new algorithm and the traditional 
algorithm to match 1000 pairs of scans respectively, repeat the 
matching for 5 times and record the running durations in Table 
I. The higher layer histogram has 36 subareas, and each subarea 
contains 10 small intervals of the lower layer histogram. We 
can find from the table that the hierarchical structure strategy 
saves about 40 percent of the computational time than the 
traversing strategy. 

 

TABLE I.  ANGLE MATCH DURATIONS 

Experiment 
numbers 1 2 3 4 5 

Traditional 
algorithm 8.2500s 8.2656s 8.3907s 8.3906s 8.4062s 

New 
algorithm 4.6406s 4.6562s 4.7657s 4.7813s 4.7812s 

 

Then, we see how fast the new algorithm acts in translation 
matching. The laser’s full range is 8.183 meters. We let the 
small interval of the lower layer histogram be 0.02 meters, and 
the subarea of the higher layer histogram contains 25 small 
intervals. We match 1000 pairs of scans with two algorithms 
respectively for 5 times, and the durations are listed in Table II. 
Table II shows the new algorithm decreases the translation 
match time greatly. The new algorithm is about 20 times faster 
than the traditional algorithm. The hierarchical histogram 
structure plays its magic in translation match more obviously 
than in angle match. The reason for this phenomenon is that the 
construction step of the angle histogram occupies most of the 
computational time and makes the influence coming from the 
new algorithm not as apparent as that in translation match. 

 



 

         

TABLE II.  TRANSLATION MATCH DURATIONS 

Experiment 
numbers 1 2 3 4 5 

Traditional 
algorithm 55.6250s 55.6562s 55.6719s 55.7619s 55.6406s

New 
algorithm 2.9687s 2.7969s 2.8125s 2.7657s 2.7870s 

 

Finally, we put the angle match and the translation match 
together and the experiment is also repeated 5 times 
respectively. The whole durations of the two algorithms are 
shown in Table III. The new algorithm cuts off four fifths 
running time from the traditional algorithm. We can easily 
conclude that the new algorithm equipped with hierarchical 
histogram structure is more suitable for real-time applications 
than the traditional algorithm. 

TABLE III.  THE WHOLE MATCH DURATIONS 

Experiment 
numbers 1 2 3 4 5 

Traditional 
algorithm 68.8906s 68.8438s 68.8750s 68.8594s 68.8750s

New 
algorithm 13.7188s 13.6875s 13.6875s 13.7656s 13.6719s

 

B. Matching Accuracy 
The hierarchical structure strategy improves the running 

speed of the histogram algorithm so greatly that we can’t help 
doubting that if the new algorithm makes some compromises 
between the matching precision and the matching speed. In fact, 
from the mechanism of the new algorithm, we know there are 
no compromises. That is, the new algorithm speeds up the 
matching step without sacrificing the matching accuracy. To 
demonstrate this point, the authors give another experiment. In 
the experiment, we let the laser scanner scan the same scene for 
thousands of times continuously. Then we select 1000 pairs of 
scans from the whole data set, and these scans differ from each 
other because of the random errors caused by the scanner. The 
new algorithm and the traditional algorithm are employed to 
match the 1000 pairs of scans and the occurrences of the errors 
are recorded in Table IV. Analyzing the table contents, we find 
the new algorithm gives the same experiment result as the 
traditional one. Furthermore, all the errors appear at the same 
matching pairs. This experiment strongly proves that the 
hierarchical histogram structure strategy makes no change in 
the matching accuracy, and the new algorithm always runs with 
the same precision as the traditional one. 

TABLE IV.  MATCHING ERRORS  

Angle match Translation match 
Error types 

1± D  1> ± D  0.02m±  0.04m± 0.04m> ±

Traditional 
algorithm 

15 2 6 9 2 

New algorithm 15 2 6 9 2 

V. CONCLUSION AND FUTURE WORK 
We present a new fast histogram algorithm for matching 

laser scans. In the new algorithm, hierarchical histogram 
structure is employed to improve the calculation efficiency of 
the histogram algorithm. A higher layer histogram takes charge 
in finding the most interested subarea in the lower layer 
histogram, and usually the phase shift that makes the maximum 
crosscorrelation is contained in the most interested subarea. In 
this way, the new algorithm avoids of traversing through the 
whole histogram to find the wanted phase shift and saves much 
computational time. In fact, this strategy is universal in all 
histogram matching applications and can speed up the 
matching step quite effectively. Some experiments are done to 
make a comprehensive analysis of the new algorithm. From the 
analysis, we know that the new algorithm can really decrease 
the computational consumption greatly, and at the same time, it 
can keep a match accuracy as same as the traditional one. 

Because the match precision is not satisfying enough, 
further study will focus on enhancing the accuracy of the 
histogram matching algorithm. Some new histogram 
construction strategy may be introduced, and a mechanism of 
filtering the wrong matching results will also be developed.  
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