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Abstract—Co-evolution has been proved by experiments to be 
a promising technique to achieve the automatic acquisition of the 
optimal strategies in automated negotiations. However, little 
theoretical work can be found currently to verify its validity. In 
this paper, we will use evolutionary game theory and replicator 
dynamics as theoretical foundation and study the co-evolutionary 
stability of the sub-game perfect equilibrium in alternating-offer 
protocol, which is widely used in the e-commerce negotiations.  
We first propose a reasonable assumption, then prove the sub-
game perfect equilibrium can repel any rare mutations occurred 
on its equilibrium and non-equilibrium paths, and finally draw a 
conclusion that the sub-game perfect strategy is co-evolutionary 
stable. In the end of this paper, we design an experiment with co-
evolutionary genetic algorithm and validate the conclusion. 

Keywords—Evolutionary game; Alternating offer; Replicator 
dynamics; Sub-game perfect equilibrium.  

I.  INTRODUCTION 
Automated negotiation is the most intelligent and creative 

stage in the future agent-mediated e-commerce paradigm, and 
has been studied fruitfully from such domains as economics, 
computer science and social psychology. With the rapid 
development of machine learning and intelligent computation, 
recent years have witnessed the emergence of another research 
method, which simulates the negotiation by competitive co-
evolution [1]. Its basic principle is to encode the negotiation 
strategy spaces as co-evolving populations, one for each 
competing agent. Co-evolution starts with randomly generated 
strategy populations, which compete with and adapt to each 
other in successive iterations to form a co-evolutionary arm 
race. As a result, each population will converge to its optimal 
strategies. This method is particularly promising because it can 
realize the automated acquisition of the optimal strategies in 
automated negotiations. 

Great progress has been made since Oliver first put forward 
this idea [2]. For instance, Bragt presented a systematic 
validation of co-evolution technique in the field of automated 
negotiation, and investigated the dynamics and equilibrium 
selection behaviors of the adaptive negotiating agents [3]; 
Gerding simulated the multi-issue negotiation scenario with co-
evolutionary algorithm, and discussed the influence of social 
and cultural norms on decision-making [4]. Tu improved 
Oliver’s original model with co-evolution encoded by finite 
state machine, and proved that its performance is better than 

linear genome [5]. These literatures come to a same conclusion 
that co-evolution will produce game-theoretically optimal 
strategies. However, they are all experimental research, and no 
theoretical research has so far been seen on this topic. 
Therefore, in order to successfully integrate the co-evolution 
technique within the agent-mediated e-commerce systems, its 
validity must be proved theoretically. 

This paper uses the evolutionary game theory (EGT) as a 
theoretical foundation to verify the stability of co-evolution in 
the alternating-offer protocol, which is widely used in current 
e-commerce negotiations. This protocol can be modeled as an 
asymmetric two-player dynamic game with continuous strategy 
spaces. Our aim is to check the stability of its unique sub-game 
perfect equilibrium (SPE) using the concept of evolutionary 
stable strategy (ESS). The remainder of this paper is organized 
as follows. Section II introduces two key concepts in EGT, 
namely the ESS and replicator dynamics; Section III proposes 
the co-evolutionary model of the alternating-offer negotiation 
(AON); Section IV analyzes the co-evolutionary stability of the 
SPE in AON game; Section V presents the experimental 
validation; Finally, section VI concludes. 

II. Background Knowledge 

A. ESS 
ESS was first presented by Maynard Smith and Price [6], 

and defined as a strategy such that, if most of the members in 
the population adopt it, no mutant strategy could invade the 
population under the influence of natural selection. Therefore, 
ESS is a stable attractor so that any small perturbation will be 
followed by a dynamic selection process which will lead to a 
restoration to the ESS. On the other hand, ESS can also be 
considered as a refinement of Nash equilibrium (NE), and can 
be used to describe the local dynamics of an evolutionary 
system. In this paper, we focus mainly on the ESS concept in 
multiple populations. 

Following traditional notations, if 1{ ,..., }nI ag ag=  is 

the set of negotiating agents and 1 2{ , ,...}i i iS s s=  stands for the 
strategy population of iag I∈ , then we can define an n-
population ESS as follows: 



         

Definition: Strategy profile * * * *
1{ ,..., | }n i is s s s S= ∈  is 

an n-population ESS, if and only if for any mutated strategy 
profile 1{ ,..., | }n i is s s s S= ∈  and *s s≠ , there exists a positive 

invasion barrier (0,1)sε ∈  so that for all (0, )sε ε∈  and 
*(1 )w s sε ε= + − , we have 

*( , ) ( , )i i i i i iu s w u s w− −>  for [1.. ]i n∀ ∈  

Here 1{ ,..., }nw w w= , and *(1 )i i iw s sε ε= + −  is the 
mixed population of iag  after invasion. Accordingly, iw−  

stands for all the opponent populations of iag  with the 
subscript i−  denoting the opponents. *( , )i i iu s w−  and 

( , )i i iu s w−  are the payoffs of strategies *is  and is  when 
confronted with iw− . 

B. Replicator Dynamics 
Replicator dynamics is the most widespread dynamics in 

EGT [7], and an explicit model of the natural selection 
process. It can be used to interpret and predict how 
populations playing specific strategies evolve. Generally 
speaking, there are discrete and continuous time versions of 
replicator dynamics. We consider the latter one in this paper. 
Formally, let j

iε  denote the proportion of individuals adopting 
strategy j

is  in population iS , then the n-population replicator 
equation can be described as: 

               
| |

1
[ ( , ) ( , )]

iS
j j jk k

i i i ii i i i i
k

u s w u s wε ε ε− −
=

= − ⋅∑       (1) 

As is shown in equation (1), /j j
i iε ε  equals to the 

difference between j
is ’ payoff and the average payoff of the 

entire population, and represents the per capita growth rate of 
j

is  in population iS . Obviously, all strategies whose payoffs 
are higher than average will have positive growth rates, and 
otherwise negative. Therefore, once a population stabilized in 
ESS, all the rare mutated strategies will get a payoff below the 
average, and will die out in the long run under the influence of 
replicator dynamics. 

III. Co-evolutionary Model of the AON Game 

A. AON Game 
AON is one of the most popular games in the non-

cooperative game theory [8]. In this game, the agent set 
1 2{ , }I ag ag= , and their time preferences can be measured 

by discount factors 1 2, (0,1)δ δ ∈ . Both agents offer 
alternately in discrete periods 1, 2,3...t =  until an agreement 
is reached. Without loss of generality, assume 1ag  offers first. 

An AON strategy is an ordered sequence of offers and 
acceptance thresholds. The former specifies a value for an 
agent whenever it is its turn to make an offer, and the latter is a 
threshold below which it will not accept the opponent offer. If 
we denote the offer and acceptance threshold of iag  in period 

t  by t
io  and t

iτ , then the strategies can be represented as 
31 2 4

1 1 1 1 1{ , , , ,...}s o oτ τ=  and 31 2 4
2 2 2 2 2{ , , , ,...}s o oτ τ=  for each agent 

respectively. For simplicity, here we assume the amount of the 
negotiation surplus is equal to unity, so , [0,1]t t

i io τ ∈ . The 
agreement will be reached in the minimum period t  satisfying 

1t t
i io τ −+ ≤ , with the offering agent receiving t

io  and its 
opponent receiving 1 t

io− . It has been proved [8] that AON 
game has such a unique SPE profile * * *

1 2{ , }s s s= : 1) In each 
odd period t , 2 1 21 (1 ) /(1 )to δ δ δ= − −  and 2 11t toτ = − ; 2) In 
each even period t , 1 1 22 (1 ) /(1 )to δ δ δ= − −  and 1 21t toτ = − ; 

3) The agreement will be reached in the first period to 1
1o  and 

1
2τ . 

B. Co-evolutionary Model 
The model consists of two co-evolving infinite 

populations 1S  and 2S . Each individual of iS  is encoded to 
play a certain strategy on behalf of iag , 1,2i = . In each 
period, two individuals, one from each population, are drawn 
randomly and repeatedly to form a strategy profile and play 
the AON game. 

The main goal of this model is to validate the co-
evolutionary stability of the SPE strategy profile in the AON 
game. Put differently, we must prove that SPE can repel the 
invasion of any rare mutants. Therefore, we assume now both 
populations have stabilized at the SPE profile * * *1 2{ , }s s s= , 
and then the populations are perturbed by a small group of 
strategies with proportions of 1ε  and 2ε  mutated randomly to 

1s  and 2s , so *1 1 1 1 1(1 )w s sε ε= + −  and *2 2 2 2 2(1 )w s sε ε= + − . 
If such a system will stabilize at 1 2 0ε ε= =  again under the 
natural selection process, then we can conclude that the SPE 
profile *s  is a two-population ESS. 

In order to simplify the model, we assume mutation 
occurs singly and orderly. This can be interpreted as follows: 
On the one hand, not all the offers and acceptance thresholds 
of a strategy, but only one of them in a certain period will have 
the opportunity to change in each mutation; On the other hand, 
mutation is a very rare event and selection acts much faster, so 
that there is enough time between mutations for the population 
to stabilize before the next mutation. 

IV. THE CO-EVOLUTIONARY STABILITY OF THE SPE 
PROFILE 

This section will analyse the stable point of 1 2( , )ε ε  in 
the above model using replicator dynamics. The analysis is 
based on a reasonable assumption as follows. 
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Assumption: For ',i i is s S∀ ∈  and i is S− −∀ ∈ , if equation 
'( , ) ( , )i i i i i iu s s u s s− −=  holds and one of the following two 

conditions is satisfied: ① is  reaches an agreement earlier than 
'
is ; or ② is , '

is  reach agreements in a same period in which the 
offer or acceptance threshold of is  is higher than that of '

is , an 
extra payoff ξ  will be given to is  so that 

'( , ) ( , )i i i i i iu s s u s s ξ− −= + . Here 0ξ >  and 0ξ → . 

The aim of this assumption is to eliminate the weakly 
dominated strategies in the AON game during co-evolution. It 
can be interpreted as: In case that two strategies have an equal 
payoff, ①agent prefers the strategy with an earlier agreement, 
or ②agent prefers the strategy with higher offer or acceptance 
threshold if they reach agreements in the same period. 

Now we analyse the co-evolutionary stability of the SPE 
profile *s  in two cases, in which mutation occurs on the 
equilibrium and non-equilibrium paths respectively. 

A. Mutation on the Equilibrium Path 

The equilibrium path of *s  is the first period of the AON 
game, so mutation will occur on 1

1o  and 1
2τ . It has been proved 

[9] that all mutants which do not lead to an NE will be 
eliminated by replicator dynamics, so we can assume 1

1o  and 
1
2τ  will be mutated to x  and 1 x−  respectively, [0,1]x ∈ . 

Table I shows the mixed populations after mutation. 

TABLE I.  POPULATIONS AFTER MUTATIONS ON EQUILIBRIUM 
PATH 

Mixed 
Population SPE profile *s     Proportion Mutation profile s   Proportion

1w  1 2*1 1 1{ , ,...}s o τ=   11 ε− 2
1 1{ , ,...}s x τ=       1ε  

  2w  1 2*2 2 2{ , ,...}s oτ=   21 ε−  2
2 2{1 , ,...}s x o= −      2ε  

Firstly, consider the case 1
1x o> . 

In mixed population 1w , we have 1* *1 1 2 1( , )u s s o=  and 
1*1 1 2 1( , )u s s o= , so the SPE strategy *

1s  will get a payoff 
1*1 21 1( , )u s w o= ; On the other hand, we can deduce from 
2*1 1 2 1 1( , )u s s δ τ=  and 1 1 2( , )u s s x=  that the payoff of mutated 

strategy 1s  is 2
1 1 2 2 1 21( , ) (1 )u s w xε δ τ ε= − + . According to 

equation (1), 2 1 2
1 1 1 2 1 11 1 1(1 )[ ( ) ( )]x oε ε ε ε δ τ δ τ= − − − − . The 

mutated strategy 1s  will die out from 1w  if and only if 

1 1/ 0ε ε < , from which the invasion barrier can be calculated 
to be 1 2 2

2 1 11 1 1max ( ) /( )o xε δ τ δ τ= − − . 

Similarly in population 2w , we have 1* *2 2 1 2( , )u s s τ=  and 
2*2 2 1 2 2( , )u s s oδ= , so 1 2*2 2 1 1 1 22 2( , ) (1 )u s w oε τ ε δ= − + ; Besides, 

1*2 2 1 2( , )u s s τ=  and 2 2 1( , ) 1u s s x= −  will lead to 
1

2 2 1 1 12( , ) (1 ) (1 )u s w xε τ ε= − + − . It is worth noting that the 

condition ②  of the assumption is satisfied here because 
1* * *2 2 1 2 2 1 2( , ) ( , )u s s u s s τ= =  and both *2s  and 2s  reach 

agreements in the first period with acceptance thresholds 
1
2 1 xτ > − . From assumption, we have 1* *2 2 1 2( , )u s s τ ξ= + . 

So we can rephrase the payoff of the SPE strategy *2s  as 
1 2*2 2 1 1 1 22 2( , ) (1 )u s w oε τ ε δ ξ= − + + . According to equation 

(1), 2
2 2 2 1 2 2(1 )[ (1 ) ]x oε ε ε ε δ ξ= − − − − . We can prove from 

calculation that the growth rate 2 2/ε ε  of strategy 2s  is 
negative for 1 [0,1]ε∀ ∈ , so the invasion barrier is 1max 1ε = . 

 

 

 

 

 

 

 

 

Figure 1.  The Phase Graph of the Co-evolutionary System 

Let 1 0ε =  and 2 0ε = , we can get four possible stable 
points for 1 2( , )ε ε : (0,0) , (0,1) , (1,0)  and (1,1) , among 
which only (0,0)  makes the second derivatives 1 0ε <  and 

2 0ε < . Therefore, we can come to a conclusion that this co-
evolutionary system will stabilize at 1 2 0ε ε= = , and all 
mutated strategies will be repelled. Figure 1 shows the phase 
graph, in which the tangent direction of each point stands for 
the changing trends of 1ε  and 2ε . The uniform invasion 
barrier of 1w  and 2w  is 1 2min{max , max }sε ε ε= , that is, 

1 2 2
2 1 11 1 1max ( ) /( )s o xε ε δ τ δ τ= = − − . 

Secondly, consider the case 1
1x o< . 

In 1w , 1* *
1 1 2 1( , )u s s o=  and 2*

1 1 2 1 1( , )u s s δ τ= , so *
1s ’s 

payoff is 1 2*
1 1 2 2 2 11 1( , ) (1 )u s w oε ε δ τ= − + ; In addition, the 

equation *
1 1 2 1 1 2( , ) ( , )u s s u s s x= =  results in 1s ’s payoff 

1 1 2( , )u s w x= ; According to equation (1), we have 
1 2 1

1 1 1 2 11 1 1(1 )[ ( ) ( )]o o xε ε ε ε δ τ= − − − − . In order for 1w  to 

repel the mutant 1s , the growth rate 1 1/ 0ε ε <  must be 
satisfied. So the invasion barrier is 

1 1 2
2 11 1 1max ( ) /( )o x oε δ τ= − − . 

In 2w , 1* *
2 2 1 2( , )u s s τ=  and *

2 2 1( , ) 1u s s x= − , so *
2s ’s 

payoff is 1*
2 2 1 1 12( , ) (1 ) (1 )u s w xε τ ε= − + − ; Furthermore, 

2*
2 2 1 2 2( , )u s s oδ=  and 2 2 1( , ) 1u s s x= − , so 2s ’s payoff is 



         

2
2 2 1 1 2 12( , ) (1 ) (1 )u s w o xε δ ε= − + − . Here conditions ① and ② 

of the assumption are all satisfied. For one thing, it can be 
proved by calculation that * * *

2 2 1 2 2 1( , ) ( , )u s s u s s= , *
2s  and 2s  

reach agreements in the first and second period respectively, 
so condition ① holds and 1* *

2 2 1 2( , )u s s τ ξ= + ; For another, 
*

2 2 1 2 2 1( , ) ( , )u s s u s s= , both *
2s  and 2s  reach agreements in 

the first period with acceptance threshold 1
21 x τ− > , so 

condition ② holds and 2 2 1( , ) (1 )u s s x ξ= − + . To sum up, 
*
2s ’s payoff will be 1*

2 2 1 1 12( , ) (1 )( ) (1 )u s w xε τ ξ ε= − + + − , 

and 2s ’s payoff is 2
2 2 1 1 2 12( , ) (1 ) (1 )u s w o xε δ ε ξ= − + − + . 

Because 1ε  is a relatively small value, we believe here that 
*

2 2 1 2 2 1 1( , ) ( , ) (1 2 ) 0u s w u s w ε ξ− = − > . In other words, SPE 
strategy *

2s  is better than the mutant 2s . So, for simplicity, we 
rephrase *

2s ’s payoff as 1*
2 2 1 1 12( , ) (1 ) (1 )u s w xε τ ε ξ= − + − + , 

and keep 2s ’s payoff 2
2 2 1 1 2 12( , ) (1 ) (1 )u s w o xε δ ε= − + −  

unchanged. According to equation (1), we can get 
2 2 2(1 )ε ξε ε= − − . Obviously, the growth rate of mutated 

strategy 2s  is negative for 1 [0,1]ε∀ ∈ , so the invasion 
barrier is 1max 1ε = . 

Let 1 0ε =  and 2 0ε = . As before, we can get four 
possible stable points (0,0) , (0,1) , (1,0)  and (1,1) . Only 
(0,0)  satisfies 1 0ε <  and 2 0ε < . Therefore, in this case, the 
co-evolutionary system will also stabilize at 1 2 0ε ε= = , and 
have a similar phase graph as figure 1 with the only difference 
in that the uniform invasion barrier in this case is 

1 1 2
2 11 1 1max ( ) /( )s o x oε ε δ τ= = − − . 

B. Mutation on the Non-Equilibrium Path 
All sub-games beginning after the first period of the SPE 

are on the non-equilibrium path. Without loss of generality, 
assume the mutations in strategies 1s  and 2s  occur in the 1t  
and 2t  period respectively, and the offer or acceptance 
threshold after mutation are x  and y . Table II shows the 
mixed populations. 

TABEL II 
POPULATIONS AFTER MUTATIONS ON NON-EQUILIBRIUM PATH 
Mixed 

Population SPE profile *s      Proportion Mutation profile s  Proportion

1w  1 2*
1 1 1{ , ,...}s o τ=    11 ε−  1

1 1{ ,..., , ...}s o x=     1ε  

  2w  1 2*
2 2 2{ , ,...}s oτ=    21 ε−  1

2 2{ ,..., ,...}s yτ=      2ε  

Obviously, all strategy profiles between 1w  and 2w  will 
reach agreements in the first period, and 

1*
1 1 2 1 1 2 1( , ) ( , )u s w u s w o= = , 1*

2 2 1 2 2 1 2( , ) ( , )u s w u s w τ= = . In 
other words, the mutated strategies receive the same payoff as 
the SPE strategies. According to replicator dynamics, the 
mutated strategies will neither die out nor spread out, but co-
exist with the SPE strategies to form a dimorphic population. 

However, the mutated strategies 1s  and 2s  do not satisfy 
the sequential rationality, although they constitute an NE. Put 
differently, they are weakly dominated strategies compared 
with the SPE ones. Taking 1s  as an example, if the mutation 
rate is µ , then there must exist a positive possibility ( )f µ  
that the AON game will proceed until the 1t  period, so that the 
sub-game beginning at this period will be on the equilibrium 
path. According to conclusions in section IV.A, mutated 
strategies will gradually die out and SPE strategies will be the 
outcome of co-evolution. As a result, we can come to a 
conclusion that the weakly dominated mutants occurred on the 
non-equilibrium path cannot invade the SPE strategies in the 
long run. 

V. The Experimental Validation 
In order to validate the co-evolutionary stability of the 

SPE profile, we use co-evolutionary genetic algorithm here to 
simulate the AON game. We will simulate a finite-horizon 
AON game for simplicity, since the dynamics are similar 
between the finite and infinite horizon versions [10]. 

Assume the discount factors are 1 0.8δ =  and 2 0.6δ = , 
and the deadline period 3T = . We can deduce from backward 
induction that the SPE profile is *

1 {0.88,0.8,1}s =  and 
*
2 {0.12,0.2,0}s = , and an agreement will be reached in the 

first period to 1
1 0.88o =  and 1

2 0.12τ = . 

 

 

 

 

 

 

 

 

 
Figure 2.  The Simulation Result 

The simulation result is shown in figure 2. We can see 
clearly that both populations begin to stabilize from about the 
60th generation, after which all mutants caused by the mutation 
operator of genetic algorithm will be repelled; The average 
payoffs stabilize at 0.88 and 0.12 after co-evolution, and the 
agreement must be reached in the first period (otherwise the 
sum of the payoffs will be less than one because of being 
discounted); Furthermore, we can see from the populations of 
the last generation that all strategy individuals have converged 
to *

1s  or *
2s . These observations validate that the SPE profile 

is the eventual outcome of the co-evolution process. 
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VI. Conclusion and Future Work 
To theoretically prove the validity of co-evolution in 

automated negotiations is a very important and interesting 
topic. In this paper, we analysed the co-evolutionary stability 
of the SPE profile in the AON game based on the EGT and 
replicator dynamics, and draw a conclusion that the SPE 
profile will be the eventual outcome of co-evolution process. 
This conclusion lays a solid foundation for the idea of using 
co-evolution to simulate the AON game and acquire its SPE 
strategies automatically. The research method in this paper is 
also suitable for other negotiation scenarios or protocols, in 
which the dynamics might of course be more complicated. 

It is worth noting that we focus here only on the 
uninvadability analysis of the SPE profiles, of which the 
dynamic attainability is not concerned. For example, in figure 2, 
we have only proved that the populations will be locked in the 
SPE profile after about 60 generations, but not considered how 
the SPE is achieved before that. Therefore, we will emphasize 
on the dynamic attainability in our future work. 
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