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Abstract—This paper addresses the problem of estimating the 
odor path which is most likely taken by the odor patch detected 
by the concentration sensor on a mobile robot moving in an 
indoor dynamic airflow environment. The odor path estimation is 
useful for plume tracing and odor source declaration. A novel 
algorithm for odor path likelihood mapping in the dynamic 
airflow environment is proposed. The algorithm has a low 
computation cost by importing the idea of dynamic window 
approach. Experiments are carried out on the mobile robot in 
which odor concentration sensor, airflow sensor, encoder and 
compass are equipped. To extract useable concentration 
information from the odor sensor, a practicable data pre-
processing method is put forward. The experiment results in the 
indoor dynamic airflow environment show that the odor path can 
be well estimated online. 

Keywords—Mobile robot, odor path, plume tracing, online 
mapping, dynamic window. 

I.  INTRODUCTION 
Odor information is widely used by many animals for 

searching for food, finding mates, exchanging information, and 
evading predators. Some animals can be trained to help humans 
seek appointed odor or gas sources. Inspired by the olfaction 
abilities of many animals, in the early 1990s, people started to 
try building mobile robots with similar olfaction abilities to 
replace trained animals [1–4]. Compared to animals, robots can 
be deployed quickly and maintained with low cost. In addition, 
robots can work for long periods without fatigue, and most 
importantly, they can enter dangerous areas. With motion 
capability, robots with onboard sensors actually form a mobile 
sensor network, so mobile robot olfaction is more flexible and 
can cover more area than a stationary wireless sensor network. 
It is expected that mobile robots developed with such olfaction 
capability will play more and more roles in such areas as 
judging toxic or harmful gas leakage location, checking for 
contraband (e.g., heroin), searching for survivors in collapsed 
buildings, humanitarian de-mining, and antiterrorist attacks. 
Some biological inspired approaches have been designed for 
plume tracing on an autonomous vehicle, such as gradient-
following-based algorithm in low Reynolds number [5, 6] and 
up-wind algorithm in a wind tunnel [6, 7], which intended to 
mimic the behaviors of chemotaxis and anemotaxis of a few 
biological entities, respectively. Practical environments are not 

always being low Reynolds number, however. In addition, an 
odor source is not necessarily in up-wind direction, either. 
Therefore, neither gradient-following-based algorithm nor up-
wind algorithm can be used simply in most real airflow 
environments [6]. Recently the so-called fluxotaxis [8] and 
infotaxis [9] plume tracing algorithms have also been proposed, 
where the knowledge of computational fluid dynamics and 
information entropy are applied, respectively.  

This paper considers the development of an algorithm for 
estimating the most likely path taken by the odor patch detected 
by the concentration sensor on a mobile robot in an indoor 
dynamic airflow environment. The estimation of odor path will 
be useful for plume tracing and source localization problem. 
Similar simulation work can be found in [6], where the hidden 
Markov method was applied. As we know, the assumption that 
the flow velocity vector is spatially invariant is not true if there 
exist significant terrain features that locally affect the flow or 
the temporal variations of the airflow are rapid enough in the 
search area [6]. Therefore, spatial variation must be considered 
in an unknown environment. And for this reason, a novel 
method for odor path estimation is proposed by choosing a 
dynamic window which covers the possible area only in which 
the spatial variation of the flow velocity might be neglected and 
the probability of there being an odor path is updated. The 
dynamic window approach used for odor path estimation is 
described in detail in Section IV. The mobile robot used in our 
experiments is capable of self-localization, sensing chemical 
concentration, airflow velocity and direction. The concentration 
sensor is perfect except the relatively long response time delay. 
The odor path estimation problem is analyzed in two 
dimensions, but the algorithms presented herein can be 
extended to three-dimensional environments. 

II. PRE-PROCESSING OF SENSORS’ DATA 

A. Wind velocity and direction 
A wind meter sends airflow data (wind velocity and 

direction) to the computer embedded in the mobile robot at a 
higher rate than the calculation period of the odor path 
estimation algorithm. Suppose there are fM  airflow readings 
per calculation period, the following mean value of the fM  
readings at the time it  is used. 
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where ( ) ( ) ikikikyikikikx utuutu θθ sin,cos == ; iku  and ikθ  stand 
for the wind velocity and direction of the k th reading at time 

( ]iiik ttt ,1−∈ , respectively. Note that all the measurements occur 
at the location of the sensor equipped on the robot, including 
odor concentration measurements introduced subsequently. 

B. Odor concentration 
The odor concentration sensor equipped on the robot has 

accurate readings in comparison with the binary values 
mentioned in [6] and [10]. Due to the concentration sensor has 
an un-negligible time delayτ , the sensor reading at time it  
should be recorded as 

 ( ) ( ) ( )kicii tctktctc −=∆−≅−τ ,  ( )ctk ∆= τint , (2) 

where ct∆  is the sampling period of the concentration sensor; 
( )ct∆τint  is the greatest integer less than or equal to ( )ct∆τ . 

It is reasonable to assume that an odor source has leaked for 
some time when the robot starts to search for the source. In 
such a case, there might be a common foundational odor 
concentration in local or even the whole area where the robot 
locates. In other words, it is possible that the odor 
concentration of the local or even the whole area is bigger or 
smaller than a concentration threshold. It is therefore not 
helpful to search for the odor path only by a binary 
concentration. This might be the reason that the valid detection 
events sometimes were rare in [6]. The moving average value 
expressed as follows is recorded as the common foundational 
concentration, 
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Thus, the detection signal can be represented by the 
following relative concentration 
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Furthermore, the signal intensity of the detection event is 
defined as follows 
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where cK is a positive constant; ( )its  represents the 
information quantity of the detection event at time it . 

III. MAP REPRESENTATION 
W is defined as a 2D workspace in which the robot 

searches. Its boundary is marked with W∂ . W can be 
uniformly divided as 

 ( ){ }njmijiCW nm ≤≤≤≤=× 1,1|, . (6) 

Where ( )jiC ,  is the square cell which lies in the i th row 
and the j th column; m  and n , which are calculated as 
follows, are the number of rows and columns of the discrete 
workspace, respectively. 
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where ( )Wx ∂∆  and ( )Wy ∂∆  are the maximal length of the 
workspace W in x  (horizontal) and y  (vertical) axes, 
respectively; a  is the side length of each cell. 

Given a point ( )yx, , the direct calculation of the index 
( )ji,  of the cell containing this point is as follows  

 ( ) ( )axjayi int,int == . (8-a) 

Inversely, given the index ( )ji,  of the cell, the coordinates 
of the points in the cell can be expressed as follows 

 ( ) ( )ajxaiy 5.0,5.0 +≅+≅ . (8-b) 

For notational convenience, we introduce a constant 
mnM = , and shorten ( )jiC ,  as kC . The index k is calculated 

as follows 

  ( ) ],1[,1 Mkjnik ∈+−= . (9-a) 

Inversely, given the index k, the index ( )ji,  can be 
calculated as follows  

   ( )( ) ( )nikjnki 1,11int −−=+−= . (9-b)  

Let ( )kkl CPr=π  represents the probability that the cell kC  
is on the path taken by the odor patch detected by the 
concentration sensor located in the cell lC . The set 
{ }Mlkkl ≤≤ ,1|π  can be interpreted as the probability map of 
the odor path that will be estimated subsequently. 

IV. ODOR PATH ESTIMATION VIA DYNAMIC WINDOW 
This section introduces the proposed solution to the 

problem of odor path estimation in dynamic airflow 
environments. As discussed in section I, the dynamic window 
(DW) covers the possible area which can be decided by a rule 
and some parameters in real time. Only in the DW, the spatial 



         

variation of flow velocity might be neglected and odor path 
estimation can be carried out.   

Suppose the odor patch detected at the robot’s location 
( )cv tX  at time ct  was at position ( )crs ttX ,  at time ( )crr ttt < . 

The relation between ( )crs ttX ,  and ( )cv tX  can be expressed as 
follows 
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where ( )( )tXU  is the airflow velocity recorded at position 

( )tX ; ( )∫
c

r

t

t
dttN  is a Gaussian noise process with zero mean 

and variance ( ) ( )[ ]22 , yrcxrc tttt σσ −− , where [ ]22 , yx σσ  is the 
variance of the airflow velocity and can be estimated online by 
the records ( ){ }c

iitU 0= . 0t  is the time of the first record. Since 

we only have the measurements at discrete times { }c
iit 0=  at the 

location of the robot, and ( )( )∫
c

r

t

t
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to ( )( ) ( ) ( )( )crycrx

c

ri iv ttvttvttXU ,,,=∆∑ =
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  Let ( )crij ttS ,  stands for the probability that an odor patch 
was in the cell iC  at time rt  and moves to the cell jC  at 
time ct ( )rc tt > . ( )crij ttS ,  can be expressed as follows [10] 
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where ( ) ( )crxijcr ttvxxttx ,, −−=∆ , ( ) ( )cryijcr ttvyytty ,, −−=∆ , 
),( ii yx and ),( jj yx are the geometrical center coordinates of 

the cells iC and jC , respectively. 

  Construct a sub-dynamic window for time rt  
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So that the set ( ) ( ){ }cricrij ttDWCttS ,|, ∈  satisfies the 
following constraint 

 ( ) η≥crij ttS , , (14) 

where η  is the probability threshold. Normally we 
choose M1=η , thus ( )crij ttS , is greater than the average 
probability. Therefore, (13) becomes  
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The main idea of (14) is that only the cells in which the 
odor patch could arrive at jC  after a time period ( )rc tt −  
according to the flow velocity records ( ) ( ){ }c

riiyix tutu
=

,  should be 
considered in the current step. The cells satisfying (14) form a 
region which is called Sub-Dynamic Window. On the contrary, 
the cells which are not in ( )cr ttDW , shouldn’t be considered. 
As a result, the current range for odor path estimation is 
restricted within the ( )cr ttDW , .  

The sub-dynamic window ( )cr ttDW ,  is only a small part of 

the map, i.e., ( )
( )
∑

∈

<
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,

1, . So ( ) ( ){ }cricrij ttDWCttS ,|, ∈  
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,

,1 . 

Since [ )cr ttt ,0∈ , the complete dynamic window at the time 

ct  in cell jC  should be 
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Due to the spatial variation of the airflow velocity in 
complex environments, the size of ( )ctDW  should be further 
restricted on time axis. A simple method is let ( ) thrc ttt ≤− 0 , 
where thrt  is a positive constant, i.e., we only maintain the 
latest velocity records. Thus, the area of ( )ctDW  is a quite 
small quantity compared with the whole work space. It’s 
therefore appropriate to assume that the airflow velocity vector 
is spatially invariant within the ( )ctDW , at least, better than in 
the whole work space. Note that the profile of ( )ctDW  is a 
function of the parameters ct , xσ  and yσ , in case of M , a  are 
constants. Actually, xσ  and yσ  are also functions of the 
time ct . So )( ctDW  depends on the variances of airflow 
velocities and time difference. 

Let ( ){ }M

icij tt
10 , =

π  stands for the odor path probability map at 
the time ct . Then, according to the signal intensity ( )cts of 
detection event at time ct , the odor path probability map can be 
described as follows 
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The computational complexity of the odor path estimation 
algorithm described by (17) is ( )( )( )∑ −

=

1

0
,

c

r cr ttDWNO , where 
( )( )cr ttDWN ,  means the number of the cells contained in 

the ( )cr ttDW , , while the algorithms in [6] is ( )2MO  at least. 

Due to ( )( ) 21

0
, MttDWN

c

r cr <<∑ −

=
, the algorithm (17) has a 

better real-time performance than that in [6].  

V. EXPERIMENTS 
The size of the map is 10m by 10m, and the side length of 

each cell is a=5cm. Thus, m=n=200, M=40000. The period of 
the odor path estimation algorithm is 0.5s, which equals to the 
measuring period of the concentration sensor. The mobile robot 
used in the experiments is shown in Fig. 1. The concentration 
sensor, airflow meter, sonar sensors, electronic compass, and 
CCD camera are mounted on the robot, but the camera is not 
used in this experiment. The electronic compass and the 
embedded odometer are used for mobile robot localization. The 
concentration sensor is a commercial PID (Photo Ionization 
Detector) from Industrial Scientific Corporation. Because the 
PID does not have digital output, another CCD camera is used 
to read the concentration data displayed on VX500 through a 
pattern recognition algorithm (c.f. Fig. 2). The airflow meter 
WindSonic is manufactured by Gill Instruments Ltd. 

 
Figure 1.  The mobile robot and the onboard sensors. 

 
Figure 2.  The PID sensor and the assistant CCD camera used to recognize 

the concentration reading. 

As discussed in section II-B, the concentration sensor has 
the time delay τ , which is a key constant which we will 
attempt to estimate. A hair drier is used to blow warm airflow 
through an entry hole into a plastic vessel containing liquid 
ethanol. The odor patch is then blown out from the outlet of the 
vessel. Due to the intensive turbulence of the airflow in the 
vessel, the airflow from the outlet was mixed with the 
volatilized ethanol molecules. The concentration and wind 
sensors are placed together in front of the outlet. The 
experiment results are illustrated in Fig. 3, where the airflow 
velocity and the concentration are normalized for convenience. 
The delay time of the concentration sensor is about 5~6s 
through about 10 experiments in various conditions. 
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Figure 3.  The response curve of airflow sensor and odor concentration 

sensor. (The velocity values of the airflow and the concentration are 
normalized for convenience) 

Two estimated odor paths are shown in Fig. 4 (case 1) and 
Fig. 5 (case 2), respectively. The odor paths are calculated 
online by the computer embedded in the mobile robot in real 
time, where the probability threshold η is set to 1/40000. The 
instantaneous odor concentration detected in Fig. 4 is 58ppm, 
while the average value is 55.2ppm, and the signal intensity is 
0.387. The variance of the airflow velocity corresponding to 
the case 1 is [9, 36]×10-4 m/s2. For the case 2, the instantaneous 
odor concentration is 114ppm, while the average value is 
113.4ppm, the signal intensity is 0.370, and the variance of the 
airflow velocity is [1, 1] ×10-4 m/s2. 

In both cases, odor paths are estimated when the valid 
detect events occurred, and the airflow velocity adopted is the 
relative value between the detected one by the WindSonic and 
the speed of the mobile robot at that time. thrt is set to 10s, i.e., 
only maintaining the latest 20 velocity records. The odor path 
is superimposed with a series of sub-dynamic windows with 
ellipse outlines. It can be found that the profile of the odor path 
in Fig. 4 is different to that in Fig. 5. This is because the outline 
of each sub-dynamic window is determined by the mean and 
variance of the airflow velocity (see (12)). The smaller is the 
variance of the airflow velocity, the thinner is the profile of the 
odor path. These results also meet common sense. So the odor 
path could be estimated by the algorithm expressed in (17), 
which would be very useful to the plume tracing and source 
localization. 
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Figure 4.  (a) Airflow velocities and (b) the estimated odor path (case 1) 

VI. CONCLUSIONS 
A novel mobile robot based odor path estimation algorithm 

via the idea of dynamic window is proposed. The odor path is 
only estimated in the dynamic window where the spatial 
variant of airflow velocity is small enough. Consequently, the 
computation cost of the estimation algorithm is obviously 
reduced. Experiments on a wheeled mobile robot in an indoor 
airflow environment demonstrate the feasibility of the proposed 
algorithm. Experiments also show that, the smaller is the 
variance of the airflow velocity, the “thinner” is the profile of 
the odor path, and the faster is the estimation algorithm.  

The proposed algorithm will be further improved and used 
for plume tracing and source localization in our future work. 
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Figure 5.  (a) Airflow velocities and (b) the estimated odor path (case 2) 
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