
TABLE I.  COMMON  HEALTH  ISSUES  IN DAYCARE CENTERS 

Health Issues  Symptoms & Activities  Facts & Figures 
Ear  infection 
(Otitis media)

Crying, sore throat, 
sneezing, diarrhea, fever, 
feeding and sleeping 
problems 

About 4.65 million children in 
USA suffer from ear infection 
every year [2] 

Diarrhea High fever, bloody stools, 
vomiting, dehydration 

About  9000 hospitalizations 
per year in USA for diarrhea [1]

Influenza Mild fever, bouts of cough, 
sneezing, excess sleep, 
symptoms of fatigue 

20-30% of children in USA 
contract influenza every year 
[1] 

Diabtetes  
(both Type I 
& Type II) 

Low activity, higher fatigue 
leading to excess sleep, 
excessive urination, high 
food intake 

Each year over 13000 children 
in USA are diagnosed with 
Type I diabetes (Juvenile 
diabetes) [4] 

Obesity High food intake, low 
activity rates, high sleeping 
rates 

By 2000, 22% of preschool 
children were overweight and 
10% obese [4] 

Whooping 
cough 
(Pertussis) 

Mild (2-3days) followed by 
severe cough, whoop sound 
while inhaling, often 
vomiting 

In 2010, 4017 cases of 
whooping cough reported in 
California, leading to death of 9 
children [3] 

Rotavirus 
Diarrhea 

Fever, vomiting and 
diarrhea leading to 
dehydration 

It is a leading cause of 
dehydrating diarrhea among 
kids in USA [1] 
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Abstract– Wearable sensors for healthcare and wireless health 
monitoring are rapidly becoming ubiquitous. They enable 
remote, accurate and low-cost health monitoring and can 
provide personal healthcare with timely detection of health 
issues. In this paper, we present a novel integrated system for 
monitoring children at day-care centers in order to facilitate 
proper care of health issues and overall wellbeing, including 
early detection of symptoms for various diseases, post-
treatment monitoring as well as encouraging healthy habits 
and activities. The proposed “Kids Health Monitoring 
System”, referred to as KiMS, is built around a wearable 
acoustic sensor with embedded digital signal processing 
capabilities in order to detect various audio signals of interest, 
such as coughs, sneezes, and cries. It is also equipped with 
wearable body temperature and pulse rate sensors, along with 
on-site processing and a Bluetooth unit for communicating 
alerts and activity on a timely basis. The record of a child’s 
activities can be used by daycare specialist, parents or the 
healthcare provider for understanding the probable cause or 
time of onset of symptoms and encouraging healthy habits. 
This paper also presents a signal processing framework for 
feature detection and classification of various audio signals, 
under varying Signal to Noise Ratios (SNR). 
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I.  INTRODUCTION 

Healthy children are the first step to a healthy adult 
population. In today’s fast-paced world, it becomes difficult 
for many parents to continuously monitor the health and 
wellbeing of their children, who spend most of their day at a 
day-care center. This is especially true for children belonging 
to the age group of 2-5 years when they are unable to express 
themselves clearly and tend to become sick easily. As more 
and more children are sent to day-care centers, even the day-
care service providers cannot adequately monitor each child 
individually. When the children return home, their parents 
are mostly unaware of the events which took place at the 
day-care facility. Events such as high rates of coughing and 
sneezing, frequent crying, vomiting, high periods of low 
activity, extended duration of sleep, low fluid consumption, 
and high body temperature might signify the initial stages of 
the contraction of an infection and hence must be brought to 
the notice of the day-care specialist as well as parents. In the 
absence of timely detection of such events and proper 
treatment, a child’s health can deteriorate significantly.  

Similarly, there are scenarios when children are not given 
enough time to recuperate, following treatment of an illness. 
They are sent back to the day-care within a short period, 
before complete recovery, often leading to a relapse of the 
disease and further complications. The time between ages 2-
5 is the formative time when a child learns about healthy 
habits and needs to develop a sense of personal hygiene. In 
the absence of continuous parental guidance, a child may 
become prone to bad habits like not washing hands properly, 
not flushing toilets, drinking less fluids, etc. These habits are 
detrimental to their long-term health and wellbeing. Hence 
there is a need to have a simple yet accurate automated 
monitoring system for providing healthcare information 
about the kids. Some facts and figures for significant health 
issues, prevalent among kids in many countries over the 
world, are presented in Table I.  

With growing advances in pervasive computing and 
development of miniature wearable sensors for monitoring 
health issues, one can envision an integrated system 
consisting of wearable non-invasive sensors with associated 
signal processing capability which can detect simple health-
related events and record their rate and time of occurrence.  
Information about potential health-related issues can be 
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conveyed to the parents daily by sending a digest of events to 
them possibly via their smart-phone. Such information can 
also be used by the doctor or healthcare provider for gaining 
insight about onset or aggravation of certain symptoms. The 
system can also alert the day-care specialist upon detection 
of severe symptoms in order to take timely action. Our 
envisioned Kids’ Health Monitoring System (or KiMS) is 
depicted in Fig. 1. It consists of some wearable sensors for 
detecting audio signals, and for monitoring body temperature 
and pulse rate. The system is scalable to incorporate other 
sensors and contains an integrated processor for detecting 
events of interest along with a non-volatile memory for 
storing relevant information. The Bluetooth transceiver 
conveys health related information periodically. The system 
contains a small rechargeable battery and should be capable 
of operating at ultralow power budget. It should occupy 
small area to be integrated into a wrist-band type device.  

The proposed ‘KiMS’ system is beneficial for healthcare 
of kids at day-care centers, in the following four areas as 
shown in Fig. 2. 
i) Early detection of infectious diseases leading to 
prevention of future complications and fatalities, e.g. if ear 
infection can be detected early, a kid can be saved from 
possible permanent damage of the middle ear lobe.  
ii) Post-treatment monitoring of a child who has just 
recovered from an infection. This helps the parents and day-
care specialists to detect relapse of infectious diseases like 

pneumonia, urinary-tract infection, malaria, etc. 
iii) Monitoring practice of healthy hygienic habits by the kid 
at the day-care, e.g. proper hand washing after meals and 
after using the toilet, toilet flushing, drinking sufficient 
fluids, etc. Hand washing is claimed to be most effective for 
preventing infections that are passed from person to person. 
iv) Detection of any chronic health issue in the child, e.g. 
general tendencies of coughing and wheezing, especially 
after high activity periods may indicate the possibility of the 
kid suffering from asthma. Besides Type I diabetes may be 
suspected if a kid has a general low activity and high sleep 
patterns over the day.  
      Building such a system involves several challenges, some 
which are addressed in this paper. The main contributions of 
this paper are: 
1) It presents an integrated scalable framework for 
monitoring the health and activity of kids at a day-care 
center. It proposes the use of non-invasive sensors for audio 
signal detection along with other parameter monitoring  like 
temperature, pulse rate, and activity level for interpreting 
the overall health and wellbeing of the kid. 
2) It presents a novel audio signal processing algorithm 
which can detect various events of interest using multi-
resolution wavelet analysis. The wavelet domain feature 
extraction algorithm is shown to perform reliably under low 
Signal-to-Noise Ratio (SNR) scenario to detect various 
audio signals of interest. The vocabulary-based encoding 
enables effficient storage and wireless communication using 
minimum power and bandwidth resource. 

In Section II, we present a background on related work 
for audio signal processing for smart health. In section III, 
we describe the KiMS framework and discuss the audio 
signal processing in details. The simulation results are 
presented in section IV and we conclude in section V. 

II. BACKGROUND 

Research has been conducted in the past in the area of 
kids monitoring. Until now, mainly video monitoring 
systems (employing surveillance cameras) have been used 
for this purpose [5]. Besides, sensing mechanisms employing 
proximity sensors [6], wrist tags, as well as blood glucose 
level monitoring for diabetic children [7] have been 
proposed. In the field of audio processing for health 
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Figure 1. Overall view of the proposed KiMS system showing 

interconnections between the constituent components. 

 
(a)                                                                           (b)                                                                  (c) 

Figure 2. (a) Classification of KiMS system utilities into four broad areas. (b) A flow diagram illustrating the uses of the KiMS system in 
monitoring different states of health and wellbeing. (c) Audio signal processing algorithm. 
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monitoring, short-speech/distress/emergency signal detection 
has been employed for tele-monitoring of patients and 
elderly people [8]. Similar audio signal processing 
techniques are used for speech activity detection (SAD) [9] 
and speech recognition from non-speech signals [10], and 
denoising of speech signals for speech enhancement [11]. 
Among non-speech signals mainly coughing and snoring 
sounds have been analyzed [12].  In particular, frequency-
based approaches, wavelet-based thresholding for denoising, 
hidden Markov and Gaussian mixture-based classification 
approaches have been pursued. In this paper, we propose a 
monitoring system primarily based on acoustic signal 
processing. It combines acoustic analysis with information 
from few other sensors to accomplish effective monitoring of 
children health issues and healthy habits in a day-care 
setting. We show that personalized online recording and 
analysis of audio signals can provide valuable health 
information, while being more attractive in memory 
requirement, system cost and privacy than video monitoring. 

III. KIDS HEALTH MONITORING SYSTEM 

KiMS is designed around a set of sensors – primarily 
audio sensors – for monitoring of various events and body 
parameters, which can be used as to analyze different health 
issues in children. The system can be attached around the 
wrist of a child in the form of a wrist-band. The major 
components of such an integrated system, as shown in Fig. 
1, are: 
1) Microphone for recording acoustic signals. 
2) An audio signal processing unit for detecting signals of 
interest, extracting features and classifying them into a set 
of relevant signals as cough, sneeze, cry, vomit, toilet flush 
and hand washing sounds. 
3) A digital thermometer for periodic monitoring of body 
temperature. 
4) Integrated pulse rate monitor. 
5) A general-purpose microcontroller, which takes input 
from the audio signal processor, thermometer, and the pulse 
rate monitor and outputs probable health issues based on a 
collective decision-making algorithm. 
6) A non-volatile memory to store the occurrence of various 
detected events of interest. 
7) A battery for providing power to the system components. 
8) A Bluetooth device to send the information to the 
parent’s smart phone or a central host computer. 

Next, we list the major challenges for designing the 
proposed system and describe possible solutions for each: 
i) Audio signal processing algorithm to identify unique 
sounds pertaining to cough, sneeze, cry, hand washing, 
toilet flushing, etc. from the background noise. 
ii) Algorithm to detect and record various events relating to 
the health and wellbeing of the kid, based on the sensed 
signals.  
iii) Method to efficiently store and transmit relevant 
information regarding the kid’s health condition, based on 
the detected events. 

iv) Introducing tunable parameters in the system which can 
be adjusted to the variability from kid to kid and as well as 
the environmental and temporal variations. 
v) Scalability of the proposed system to incorporate more 
sensors to expand the scope of application. 

A. Audio Signal Processing 

The recorded audio signals have to be processed in order 
to identify different events of interest. The audio signal 
processing task has three main steps, as shown in Fig. 2c: 
1) Detection of ‘signals of interest’ in the time domain: We 
search for ‘signals of interest’ in the recorded time domain 
signals, based on the real time detection of a ‘collective 
burst of peaks’. Certain parameters need to be properly 
chosen for optimal detection performance. These parameters 
are as follows:  
1) The amplitude threshold ‘T’, above which a sample is 
detected as a peak (high thresholds leads to rejection of 
artifacts but may also miss detection of signal of interest 
whereas low thresholds lead to detection of two or more 
signals of interest as a single one, inclusion of artifacts, 
etc.); 2) The maximum interval ‘d’ between two peaks for 
them to belong to the same ‘signal of interest’ (or, the 
minimum duration ‘d’ between peaks of two consecutive 
distinct signals of interest); and 3) duration ‘D’ below which 
a burst of peaks can be classified as an artifact or 
disturbance (reversely minimum duration for a burst to be 
recognized as a signal of interest). A real time recording of a 
sequence of cough signals with intermittent artifacts is 
shown in Fig. 3, with an illustration of these parameters.  

For our set of audio data (all with a sampling frequency 
of 44.1 KHz), the results which lead to the selection of 
threholds for these parmeters are shown in Fig. 4. The value 
of k in the amplitude threshold T = (m + k*s) is varied in 
Fig. 4(a), where ‘m’ and ‘s’ are mean and standard deviation 
of the absolute sample values over a time window of 4 sec. 
The minimum error in detection occurs at k=2 for our set of 
signals. The performance metric for detection is the number 
of bursts detected, with their durations and positions in 
comparison with the actual values. For the value of the  
duration ‘d’, the probability distributions of inter- and intra-
peak intervals are compared. As seen from Fig. 4(b), there is 
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Figure 3. Real-time recorded cough signals in time domain.  
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no overlap in the two distribution plots. Hence ‘d’ is chosen 
to be the minimum duration between the first and last peaks 
of two consecutive signals of interest, which, in this case, is 
2000 samples. For getting the optimized value of ‘D’, we 
compare the distribution plots of artifact duration and the 
duration of signals of interest. We observe from Fig. 4(c) 
that there is some overlap in the plots. As a result, we 
choose value of ‘D’ as minimum duration of a burst of 
peaks = 5300 samples, so that we do not miss any signals of 
interest. Any artifact included thereby in the detection phase 
would be distinguished from the other signals during the 
feature extraction and subsequent classification process.  
2) Extraction of features of the detected signals: We perform 
feature extraction of the detected audio signals in the 
wavelet domain. Noise corrupts many of the features of the 
signals of interest in the time domain. The influence of noise 
on a particular feature of a cough signal, with decreasing 
SNR is shown in Fig. 5. In most of the cough signals, the 
majority of the burst of peaks occur in the first quartile of 
the signal duration, where a peak is a sample with ampliude 
greater than (T=m+2*s). We observe from Fig. 5 that with 
increasing noise levels and using the variable amplitude 
threshold T, bursts of ‘peaks’ are more uniformly distributed 
over the signal length. Hence, the feature used for 
identification of cough signals gets degraded with noise. 
Besides the frequency content of some of our signals of 
interest are similar and overlapping. Very minute 
differences in spectral content exist in different frequency 
bands, as observed from the spectrum of a cough and a 
sneeze signal in Fig. 6. Hence simple frequency-domain 
filtering cannot be used for extraction of unique features.  

So the joint time-frequency i.e. the wavelet domain is 

used for extracting features of the detected signals of 
interest. The wavelet transform  retains both time and 
frequency information while reducing the number of 
samples at each level of wavelet decomposition. This helps 
us identify distinct hyperclusters corresponding to different 
features of these signals which can be easily computed in 
real-time using limited computational resources while 
allowing distinction between these signals on the basis of 
small set of features as described below. Detection of 
‘signals of interest’ may be done in the wavelet domain to 
nullify the effect of noise on detected features, but that 
would require wavelet decomposition of the entire signal 
duration. This would require huge computational power and 
storage requirement from the system point of view. So 
detection is done in the time domain and the signals of 
interest are sent to the wavelet engine for feature extraction. 
 To obtain the optimal number of levels, a  time domain 
feature and a frequency domain feature were tested for 
increasing levels of decomposition, corresponding to 
different signals of interest. The minimum of the sum of the 
errors of the two feature values (with respect to the feature 
values of original noiseless signal) occurs for the 3rd level of 
approximation. As shown in Fig. 7, the 3rd level of 
approximation provides a good trade-off between denoising 
(getting rid of time-domain noise superimposed on the 
desired signal) and preservation of original signal features. 
An approximation of the signal at a higher level of 
decomposition leads to smoothening of the signal (hence 
denoising), along with a loss of spectral content of the 
original signal corresponding to higher frequency bands. We 
denote the 3rd level approximation coefficient vector as a3 
and extract various features such as:  
i) The distribution of the number of peaks over the signal 
duration (a3), where a peak is defined as a sample whose 
absolute value exceeds (T=m+2*s), where ‘m’ and ‘s’ are 
the mean and standard deviation of the a3 coefficients. 
ii) The distibution pattern of the peak values with respect to 
the amplitude threshold, over the duration of a3 coefficients. 

Fig. 8 illustrates these two features for the dataset 
consisting of cough, sneeze, cry and toilet flush sounds.The 
two features in conjugation also gives an accurate view of 
the energy distribution over the duration of the signal. High 
count of high amplitude peaks signify high energy in that 
duration band like the initial band of cough signals in Fig. 8 
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Figure 4. (a) Variation of detection rate with varying amplitude thresholds. (b) Probability distribution of intra-peak distance and inter-peak 
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where as low count of low amplitude peaks correspond to 
comparatively lower energies like that of sneeze signals 
over the later half duration. High and low amplitude peaks 
may be defined as those whose absolute values are greater 
than 1.5 times and less than 1.2 times ‘T’, respectively. A 
small burst of high amplitude peaks and a large burst of 
comparatively low amplitude peaks may correspond to the 
same energies over that duration. Besides an estimation of 
the mean absolute sample value may be obtained from these 
two features. Bursts of peaks scattered over the entire 
duration of a3 signifies high mean value of samples like that 
in cry signals in Fig. 8.   
   Finally, we take inspiration from wavelet packet 
decomposition and modify traditional pyramid-based multi-
resolution wavelet decomposition [13] in order to extract 
different levels of low-frequency and high-frequency 
coefficients corresponding to the different spectral clusters, 
in order to identify frequency-domain differences between 
the different signals. In order to reduce the aliasing effects 
of superimposed noise while estimating the general signal 
trends rather than every minute detail, we apply the 
multiresolution based wavelet decomposition on a 
normalized thresholded signal. The thresholded version 
constitutes only the weighted distribution of peaks in the 
original signal. The weights are proportional to the 
normalized difference between the peak value and the 
amplitude threshold ‘T’. A thresholded version of a cough 
signal is shown in Fig. 9. Pyramid-based multiresolution 
wavelet decomposition is performed on this thresholded 
signal over 3 levels, as shown in Fig. 10. The normalized 
energy of the resulting 8 frequency bands, denoted as x1-x8 
give an estimate of the spectral distribution of the signal. 
Generally this distribution follows a unique pattern for each 
signal type, with some extent of overlap. The distribution of 
the normalized energy of the 8 frequency clusters is shown 
for a single cough, sneeze, cry, and toilet flush signal in Fig. 

11. We have chosen the decomposition level as 3 because 
increasing it does not alter the classification results much, 
but increases the complexity and computational power from 
the hardware point of view. Reducing it to 2 leads to greater 
overlap among different signal types (only 4 frequency 
bands), thus detoriating  the classification performance, as 
illustrated  in Fig. 12.  
 3) Classification of the signals based on extracted features: 
Clssification is done through a non-linear classifier using 
the extracted features. The classifier is initially trained using 
a supervised learning network with a training set of features 
of the four different classes of data namely cough, sneeze, 
cry, and toilet flush signals. The features given as inputs to 
the network are as follows:  
a) The number of peaks corresponding to each quartile over 
the total signal duration. This number is normalized with 
respect to the signal duration. 
b) The normalized values of peaks, above the amplitude 
threshold, for each of the 4 quartiles of signal duration. 
c) The normalized energy of each of the 8 frequency bands 
obtained by 3rd level wavelet decomposition of the 
normalized thresholded signal. The energy is normalized 
with respect to the total energy of the 8 bands combined.  

We have used the Levenberg-Marquardt back-
propagation training algorithm [14] as it provides good 
results in terms of performance (mean square error of 
classification and minimum false positive rates) as well as 
time for convergence for our data set. This algorithm uses 
an approximation of the Hessian matrix of the performance 
metric for updation at each iteration. It emulates steepest 
descent in the initial period (high performance error) and the 

0 2 4 6 8 10
0

10

20

30

40

50

M
in

im
u
m

 s
u
m

 o
f 
E

rr
o
r 

%
's

  
o
f 
th

e
 2

 F
e
a
tu

re
 v

a
lu

e
s

Levels of Decomposition  
Figure 7.  Variation of sum of errors of a time domain and a 

frequency domain feature with varying levels of decomposition. 

0

5

 

 

0

2

 

 

0

5

10

N
u

m
b

er
 o

f 
P

ea
ks

 (
10

00
s)

 

 

0 0.25 0.50 0.75 1.00
0
2
4

 

 

Normalized signal duration

Cough

Cry

Toilet Flush

Sneeze

0

0.5

1

 

 

0

0.5

 

 

0

0.5

 

 

N
o

rm
al

iz
ed

 t
h

re
sh

o
ld

ed
 a

m
p

lit
u

d
e

0 0.25 0.50 0.75 1.00
0

0.5

Normalized signal duration

 

 

Sneeze

Cry

Toilet Flush

Cough

 
(a)                                              (b) 

Figure 8. Distribution of (a) number of peaks, and (b) values of 
thresholded peaks, over the signal duration. 

0 2000 4000 6000 8000 10000
-0.2

0

0.2

 

 

0 2000 4000 6000 8000 10000
0

1

2

A
m

p
lit

u
d

e

Samples

 

 

Original Signal

 Thresholded Signal

Figure 9.  Original Cough signal and the thresholded version 
using a weighted distribution of peaks. 

-1.5 -1 -0.5 0 0.5 1 1.5
x 10

4

0

0.05

0.1

freq in HZ

am
p

lit
u

d
e

 

 

-1.5 -1 -0.5 0 0.5 1 1.5
x 10

4

0

0.05

0.1

freq in HZ

am
p

lit
u

d
e

 

 

Cough

Sneeze

 
Figure 6. Frequency spectrum of a cough and a sneeze signal showing 

high overlap in spectral contents. 

5



Newton’s method near the error minimum. In the training 
set, 70% of samples were used for training, 15% for 
validation and the remaining 15% as a test set. Post-training, 
the trained classifier was used to test a completely 
independent test set of the 4 types of signals. For deciding 
upon the convergence of the training operation, two 
parameters were used namely the the performance error 
(m.s.e) and the consecutive number of validation failures. 
Empirically derived thresholds of 10-12 and 4 respectively 
were used for these two parameters. 

B. Sensors 

Apart from a miniature microphone which records audio 
signals, two other sensors are also used to monitor the 
following body parameters. 
a. Body Temperature: A digital thermometer is integrated 
in the wrist band style device which will record the body 
temperatures at regular intervals. The temperature 
recordings coupled with inputs from the audio signal 
processing unit, can lead to the probable detection of 
various infections, e.g. patterns of higher body temperature 
coupled with periodic coughing, sneezing and extended 
sleep probably signals the onset of an influenza in the kid. 
b. Pulse Rate Monitor: A pulse rate monitor is also 
integrated in the wrist-band device for measuring the pulse 
rate at regular intervals. The pulse rate information provides 
insight into general activity level, sleep patterns, etc. of the 
child concerned. A sharp decrease in pulse rate (usually to 
about 50-60, which can vary with individual subjects) over 
an extended duration, coupled with no major audio signals 
being recorded (only background sound) during that time, 
indicates a period of sleep. A pulse rate of more than 140 
over some duration indicates a period of high activity. 

C. Detection of Health Issues and Symptoms 

Sudden increase in the rates of various audio signals of 
interest like cough, sneezes, crying, vomiting etc. could 
indicate potential contraction of an infection by the kid and 
hence the requirement of proper steps of diagnosis and care. 
Besides, these audio signals can assist in interpreting the 
progress of the kid in terms of recovery from an infection. 
Information regarding relapse of the disease can be 
formulated by observing the audio signal patterns over the 
day. Periodic body temperature monitoring can lend vital 
data for diagnosis and treatment. Besides, monitoring the 
pulse rate as well as frequency of speech signals would 
enable one to understand the activity and sleep patterns of a 

child. Activity monitoring is important for obese and diabetic 
kids, for whom higher activity should be encouraged. Sleep 
patterns provide an insight into the general well-being of the 
child. Healthy habits like proper washing of hands, flushing 
of toilets, etc. can be monitored by measuring associated 
audio signals like distinct sounds of flowing water, toilet 
flushes, etc. Fig 2.b shows a general flow of KiMS system 
utilities in detecting different states of health and wellbeing. 

D. Event Storage and Transmission 

We use a vocabulary-based encoding scheme [15] to 
store and transmit the occurrences of events. As the number 
of events we are detecting ranges from 8-10, we use 4 bit 
encoding to store the occurrences of events, e.g. we encode 
occurrence of cough as ‘0000’ and sneeze as ‘0001’, 
decrease of sleep as ‘0010’ etc. On detection of an event of 
interest, the corresponding code is stored in the flash 
memory along with its particular time of occurrence. The 
time of occurrence can also be encoded according to 
different durations of the day. 3 bits may be used to identify 
8 different time periods of the day. Often in many cases, the 
general time trends (duration of the day) of occurrences of 
events like increase of body temperature, increase in sneeze 
rates, etc. are more useful for clinicians for diagnostic 
purposes, rather than the exact time of occurrence. Hence 
this methodology of encoding of time of occurrence of 
events serves our purpose, with the advantage of low 
storage, low power requirement etc. Similarly frequency of 
occurrence within pre-specified duration is also encoded.  

A flash memory stores the counts of coughs, sneezes, 
crying as well as the body temperature and general activity 
of the kids over the past 2-3 days. This history information is 
coupled with the currently detected event data to help in 
identifying symptoms of various health-related issues. For 
example, increase in number of coughs and increase in sleep 
indicates onset of influenza. When required for transmission 
via Bluetooth, the record of events is transmitted using a 
random key-based scrambling for data security over the 
wireless channel [16]. This entire encoding scheme is very 
efficient from the perspective of transmission bandwidth 
reduction, leading to low-power operation, as well as 
reducing the requirement of storage space, which can help 
reduce the size, weight and cost of the system. As an 
example, detection of an event like a cough in absence of in-
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Figure 11.  Distribution of normalized energy in 8 different frequency 

clusters for 4 types of signals. 

 

Figure 10. Three levels of pyramid-based multiresolution wavelet 
decomposition  of the thresholded signal. 
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situ signal processing and vocabulary based encoding would 
entail, sending the whole data set (size of order of 
magnitude 4) over the transmission channel, thus requiring 
huge bandwidth and power requirement. In contrast, in 
presence of the above features, only 7 bits is required (4 for 
the event and 3 for the time of occurrence) for transmission. 
In addition, the system can raise an alert to the day-care 
specialist if urgent care is required. These signals can be 
sent via Bluetooth to the phone of the day-care specialist or 
enable a beeper, associated with unique ID for each kid. 

E. System Calibration 

There is a provision for initializing and calibrating the 
KiMS system according to a child’s body and activity 
patterns, e.g. the normal pulse rate, pulse rates during eating 
and sleeping, time of the day when the child usually takes 
his/her meal (after which he/she is supposed to wash hands 
properly) can be registered before usage or in a periodic 
manner during a short. Based on this calibration step, the 
tunable parameters of the algorithm for event detection and 
alert notification are set. Periodic calibration over the 
lifetime of the device can help to adjust for sensor drift due 
to aging and environmental variations. 

F. Scalability 

The KiMS system is scalable in the sense that new 
sensors can be added to it to extend its monitoring 
capabilities and the application domain. For monitoring the 
amount of food and liquid intake, a weight sensor, preferably 
as a pressure sensor at the shoe sole, can be added to the 
system. Slight increase in body weight after food intake (till 
digestion sets in) may be measured by the pressure sensor 
and recorded along with the time of measurement. The 
sensor can coordinate its measurement with the main system 
via Bluetooth. A weight sensor can help monitor the feeding 
patterns of obese and diabetic children. Information about a 
child’s food and liquid intake patterns may help in diagnostic 
purposes as well. The KiMS system can also incorporate a 
dust or pollen sensor to monitor the pollen levels in the day-
care atmosphere, thus helping to diagnose allergy-related 
issues in kids. An application scenario where the KiMS 
system might come in handy is the early detection of a 
contagious infectious disease for preventing outbreak and 
spread of the infection in the day-care center. This includes 
diseases like influenza, rotavirus diarrhea, hand foot and 
mouth disease, and chicken pox. The framework of 
monitoring health and wellbeing in kids can also be extended 

to home care of elderly people. The information from the 
KiMS system can specially be helpful to the in-house 
healthcare providers or nurses for monitoring the elderly 
people. In developing countries, where the incidence of 
health-related problems is relatively higher, this low cost, 
simple and accurate monitoring system can be highly 
beneficial to both the people and the healthcare agencies.          

IV. RESULTS 

A. Data Set 

Our data set comprises of signals of 4 non-speech classes 
namely cough, sneeze, cry, and toilet flush, respectively. 
Some of these signals were collected from available sound 
databases of kids in the internet like the Audio Micro Stock 
library [17], Universal Soundbank etc. Others were recorded 
in real-time using wireless microphones attached to the body 
or close to the body at various distances. In total, they 
comprise of 142 cough signals, 78 sneezes, 89 cry signals 
and 61 toilet flush signals. Besides 22 different physiological 
noises like the falling of a pencil, talking in the background, 
distant noises of moving vehicles, etc. were recorded as 
artifacts, for testing the performance of the algorithm. 

B. Simulation Results 

We test our algorithm in the detection and classification 
of the 4 types of signals. The classifier is a feed forward 
back-propagation neural network, with one hidden layer of 
30 neurons. The nonlinear classifier is trained using the 
Levenberg-Marquardt training algorithm. 70% of each of the 
4 different types of signals was used for the training phase, 
while the remaining for the test phase. Each data vector 
consisted of 16 features (8 time-domain and 8 spectral-
domain). The training results are presented in Fig. 12(b).  As 
observed from the figure, the training is satisfactory with low 
mean square error for the training set. Furthermore, the 
validation and test performance curves follow a similar 
pattern i.e. they achieve their minimum around the same 
iteration point, thus eliminating the possibility of an over fit.  
The trained classifier was tested with the independent test set 
(30% of the data, which was not used in the training phase) 
for overall performance, the results of which are presented in 
Fig. 13. The classification error was less than 9% for sneeze, 
cry, and toilet flush sets and for cough it was slightly higher 
at 11%. Here, a signal is correctly classified if the classifier 
output is within a tolerance band of 10% of the actual target 
output. Classification error for a class is the percentage of 
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Figure 12. Training performance of the non-linear classifier with (a) 2, (b) 3, and (c) 4 levels of wavelet decomposition. The performance is poor 
for 2 levels and improves with increase in levels. There is minimal improvement in performance of the classification algorithm from 3 to 4 levels.
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misclassifications with respect to the total number of signals 
for that class. Those signals whose output values do not fall 
within the tolerance band of any target class value are 
classified as ‘unclassified’. They probably represent the 
‘artifacts’, included in the ‘signal of interest’ detection phase. 
The performance for each class is shown in Table II. 
Simultaneously, we also test the robustness of our algorithm 
i.e. test its performance in the presence of noise. To simulate 
this, we add Gaussian noise of increasing Signal to Noise 
Ratio (SNR= Signal Power/Noise Power). We illustrate the 
results of the varying detection rates of signals with 
increasing SNR values in Fig 14. It is observed that the 
algorithm performance is satisfactory (Correct Classification 
% > 75) up to an SNR value of 4.8, below which the 
performance degrades drastically.  

V. CONCLUSION 

     We have presented a wireless health monitoring system 
for monitoring children health in day-care facilities. The 
device consists of a combination of sensors to collect 
information about meaningful events such as extent of 
coughing, sneezing, activity level, and amount of sleep, 
which can be used to predict health issues, diagnose 
symptoms, and monitor healthy habits. The device can 
potentially be useful for different parties, namely parents, 
doctors/nurses treating children, and the day-care managers. 
We have presented the sensing mechanism and the 
necessary signal processing algorithm to identify relevant 
events. Future investigations will include making the 
algorithm more robust, further reducing classification errors 
and including other acoustic signals for detection. Blind 
source separation techniques can be investigated for 
isolating an event from a mixture of simultaneously 
occurring events. An example would be when a child 
coughs and washes hands at the same time or when two 
nearby children cough and sneeze simultaneously. 
Independent component analysis can be used in such cases 
to separate individual sources. In the event of a kid 
coughing/sneezing, it will be recorded in a nearby kid/kids’ 
monitoring system. However as acoustic intensity follows 

an inverse square distance relationship, the recorded 
cough/sneeze intensity of a nearby child will be low (below 
the amplitude threshold) and will not pass as a signal of 
interest in the initial phase of detection. Further 
investigation will also include building a prototype of the 
proposed system and its subsequent validation in-field. 
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Figure 14. Percentage of correct classifications of cough with SNR. 
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Figure 13. Classifier performance for independent test set. 

TABLE II.  % OF TRUE DETECTIONS AND MIS-CLASSIFICATIONS 

             Detected 
  Actual 

Cough Sneeze Cry Toilet Flush Unclassified

Cough 88.3 6.2 3.5 0 2 

Sneeze 3.3 93.4 1.1 1.1 1.1 

Cry 3.7 2.1 91.8 1.3 1.1 

Toilet Flush 0 2.1 3.2 93.9 0.8 
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