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Abstract— Recent studies have suggested significant differ-
ences in motor performances of Parkinson’s Disease (PD) pa-
tients who have L-dopa induced dyskinesias (LIDs), even when
off of L-dopa medication. The pathophysiology of LIDs remains
obscure, so applying data-mining techniques to the patients’
motor performance may provide some heuristic insight. This
paper investigated visually-guided tracking performance of PD
patients using data mining techniques to reveal the differences
between dyskinesia and non-dyskinesia patients. We found that
K-means clustering of the root mean square (RMS) tracking
error at faster tracking speeds and with ambiguous visual
stimuli was able to effectively discriminate between the two
groups with 77.8% accuracy. Decision tree classification was
less accurate (68.4%) and determined that years since diagnosis
was the best feature to distinguish between groups. Our results
suggest that data mining methodologies may provide novel
insights into features of the neurovegetative disease.

Index Terms— Parkinson’s disease, Data Mining, Dyskinesia,
Tracking performance

I. INTRODUCTION

As a concept that emerged twenty years ago, data min-

ing helps to get deep insights and facilitate unprecedented

understanding of large data sets. Data mining has potential

in revealing the hidden meaningful correlations, patterns and

trends of information extraction from biomedical data sets.

Recently it has become popular in healthcare and medicine,

such as identifying health insurance fraud, classifying at-risk

people, predicting healthcare cost, discovering relationships

between health conditions and disease, and supporting clin-

ical decision making [1].

Parkinson’s disease (PD) is a common neuro-degenerative

disorder of the central nervous system [2] , and the main

motor features of the disease include tremor, bradykinesia

(slowness of movement), rigidity (stiffness of the limbs and

trunk), and postural instability [3]. Levodopa (L-dopa) is the

most effective drug improving the motor disorders markedly,

but the long-term L-dopa administration might result in

L-dopa-induced dyskinesias (LIDs), which are involuntary

writhing movements [4], [5].

Increasingly, data mining techniques (classification, clus-

tering, association) are being applied in PD. For example,

focusing on speech articulation difficulty symptoms of PD,

three classification methods, e.g., tree classifier, statistical

classifier and supportive classifier, have been used to make

prediction of PD [6]. Accurate assessment of motor perfor-

mance in PD subjects with dyskinesia is required to give

informed medication suggestions. Thus, a support vector

machine (SVM) classifier has been implemented to evaluate

the severity of tremor, and detect motor fluctuations using

wearable sensors [7], [3]. Guided by these existing data min-

ing techniques in PD, we try to find if data mining techniques

can be applied into analysis of tracking performance.

Previous studies have indicated that PD subjects have

difficulty performing visually-guided tasks, in addition to

internally-guided tasks. Studies have also assessed motor

performance of both non-dyskinesia and dyskinesia using

statistic methods. It demonstrated not only the presence of

LIDs clearly differentiate motor performance of dyskinesia

from non-dyskinesia while on medication, but also subtle

differences in tracking performance can be detected between

non-dyskinesia and dyskinesia even when off of medication

[8], [2], [9]. In this paper, we utilize two data mining

techniques to analyse visually-guided tracking performance

between non-dyskinesia and dyskinesia. Consistent with pre-

vious studies, we calculated the root mean square (RMS)

tracking error of non-dyskinetic and dyskinetic patients’

tracking performance under different conditions. However,

in this paper we used the K-means method to find which

conditions are effective to cluster them into two groups.

We also applied the decision tree algorithm to classify non-

dyskinetic and dyskinetic patients based upon five clinical

characteristics (e.g., Age, Years Since Diagnosis).

The contributions of the paper are as follows:

• We investigate visually guided tracking performance of

both dyskinesia and non-dyskinesia PD patients and

verify that they can be differentiated using data mining

technique based on their performance monitored under

different tracking conditions.

• We attempt to reveal the most effective tracking condi-

tions (i.e., dataset attributes) to classify the PD patients

into two different groups, and demonstrate that the

highest classification accuracy is when using dataset

attributes of fast-speed and with-noise tracking condi-

tions.

• We study how data mining and statistical analysis

complement each other by looking at clustering results

(e.g., distance between cluster centroids) and statistical

significance (e.g., p-value on t-test) of tracking perfor-

mance.
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Fig. 1. The closed Lissajous figure measured 1.62 m by 1.22m. At time
point i, the relative distance between the index finger and the target is di.

II. METHODOLOGY

A. Data Collection

In this study, we recruited nineteen clinically defined

PD subjects (Hoehn and Yahr stage: I-III) [10], ten non-

dyskinetic PD (NDPD) subjects and nine dyskinetic PD

(DPD) subjects. Before the study all patients had stopped

the medications of L-dopa overnight for at least 12 hours,

and 18 hours for dopamine agonists, and thus they were

clinically off medication. The motor severity of this disease

was rated based on the Unified Parkinson’s Disease Rating

Scale (UPDRS) motor score in the off medication state (Table

II).

A closed Lissajous curve was shown on a screen (Width:

1.62 m, Height: 1.22 m) with a red circular target (the diame-

ter is 12 cm). The target moved through the Lissajous curve

(Fig. 1). Subjects stood about half a meter in front of the

screen, and tracked the moving visual circular target with the

index finger [9]. A six degrees-of-freedom electromagnetic

tracking system (Polhemus Fastrak [Polhemus, Colchester,

VT, USA]) was used to record subjects’ tracking. Data were

recorded at 10 Hz, and then for each trial of each subject,

a robust linear regression analysis was performed to deter-

mine the optimum affine transformation. The transformation

was to map the sensor data coordinates to Lissajous figure

coordinates in 2-dimension [9].

B. Attributes Selection

In this task, there was one no noise (No-N) and three visual

ambiguity (i.e. “noise” (With-N)) conditions, i.e., small noise

(SN), medium noise (MN) and large noise (LN), as shown

in Fig. 2. There were two tracking speeds for each of above

conditions, a slow speed (SS) and a fast speed (FS), so totally

eight conditions. For each condition, each subject performed

six individual trials at one state of either Off medication

(OFF-M) and On medication (ON-M). Finally there were

96 trials in total for each subject. However, one dyskinetic

subject did not complete all trials, and we omitted this subject

in all subsequent calculations (but later for using decision

tree, we did not omit this subject).

No Noise Small Noise

Medium Noise Large Noise

Fig. 2. The target trajectory in different noise.

TABLE I

K-MEANS CLUSTERING ALGORITHM. [11]

Choose K points from all points as the initial centroids randomly .
repeat

Assign every point to the closest centroid to form K clusters .
Recompute each cluster’s centroid.

until The centroids would not change

For each individual trial, we got the value of root mean

square (RMS) tracking error, which was calculated by squar-

ing the distance between index finger position and target

position for each time point, averaging the squared values,

and finally taking the square root of the result.

XRMS =

√√√√ 1

N

N∑
i=1

d2i (1)

In Equation (1), di is the relative distance between two points

(the index finger and the target) at time point i (Fig. 1).

We used root mean square (RMS) tracking error as at-

tributes, totally 96 attributes for each subject.

C. Application of Data Mining Techniques

In this paper, our main purpose was to support the previous

statistical results, and find how data mining techniques and

statistical methods complement each other, so we applied

basic data mining techniques. We tried to find whether it

could provide a new heuristic insight into clinically relevant

topics. We did not focus on the data mining algorithm itself

or comparing different algorithms.

We utilized two representative data mining techniques, K-

means and decision tree, which are basic techniques in the

data mining field. Using the K-means clustering algorithm

(Table I), we need to set the initial value of K. We initially

set k = 3, but the derived clusters did not appear meaningful.

In this paper, since we mainly tried to find which conditions

are effective for separating NDPD and DPD, we set two

clusters, i.e. k = 2. Thus our expectation was that all non-

dyskinetic subjects would be clustered into a cluster, and
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likewise all dyskinetic subjects would be clustered into the

other cluster.

Since the K-means clustering algorithm is unsupervised,

there would be no label in clustering results. But we simply

modified the K-means algorithm to a supervised-like algo-

rithm with labeling clusters based on subjects distribution

from the results. This scenario is that we labeled a cluster

as non-dyskinesia if the majority of the nodes are non-

dyskinetic subjects. Likewise we labeled the other group

as ”dyskinesia”. The performance of the algorithm is then

evaluated based on classification accuracy. Then we extracted

the conditions, i.e., SS, FS, With-N, No-N, OFF-M, ON-M,

to find out which conditions were more effective for clus-

tering non-dyskinesia and dyskinesia. Meanwhile Principal

Components Analysis (PCA) was also conducted to verify

the results.

In previous studies, we did not find significant differences

between non-dyskinetic and dyskinetic subjects in each clini-

cal characteristics using statistical methods (i.e. t-test). In this

paper, we applied the decision tree algorithm, and tried to

combine the characteristics to find whether it could separate

the non-dyskinetic and dyskinetic subjects. Meanwhile we

also observe the structure of the distribution. For the splitting

criterion, GainRATIO which is well known in C4.5 [12] was

used in this paper.

GainRATIOsplit =
Gainsplit

SplitINFO
(2)

SplitINFO = −
k∑

i=1

ni

n
log

ni

n
(3)

Gainsplit = Entropy(p)− (
k∑

i=1

ni

n
Entropy(i)) (4)

Entropy(i) = −
∑
a

p(a|i) log p(a|i) (5)

In Equation (2-5), the parent node is p that is split into k

sub-nodes, and ni is the number of records in sub-node i.

While p(a|i) is the relative frequency of label a at node i.

According to the GainRATIO-based decision tree, we

could get which factor(characteristic) was at the first-level

node (root node) that means it is the optimal split character-

istic among these five characteristics. So roughly we could

know which characteristic is more effective for classifying

NDPD and DPD.

III. RESULTS AND DISCUSSION

A. K-means Clustering

We used root mean square (RMS) tracking error as at-

tributes described in Section II.B. Fig. 3 shows the results of

K-means clustering. X-axis stands for subjects, and first ten

subjects (1-10) are NDPD, last eight (11-18) are DPD. Y-axis

stands for the cluster label. Since subjects with dyskinesia

or non-dyskinesia are known in advance, the accuracy of

clustering can be calculated. First, Fig. 3(a) shows the result

of using all attributes. In NDPD (1-10), NDP subject 2, 3 are

TABLE II

SUBJECTS’ CHARACTERISTICS. [9]

ID Subject Age Years
Since
Diagnosis

*UPDRS Converted
Daily
L-dopa
Dosage(mg)

L-dopa
Equiva-
lent Daily
Dose (mg)

NDPD
1 ND1 63 5 8 320 620
2 ND2 68 4 19 400 400
3 ND3 64 9 69 860 860
4 ND4 59 9 14 740 740
5 ND5 45 4 11 780 780
6 ND6 65 9 51 640 1003.3
7 ND7 63 10 54 800 1000
8 ND8 66 7 22 640 673.3
9 ND9 62 5 31 400 400
10 ND10 59 12 47 400 775

DPD
11 D1 65 22 67 650 750
12 D2 64 7 42 880 1173.3
13 D3 68 13 51 660 880
14 D4 65 15 57 720 960
15 D5 66 5 45 1020 1020
16 D6 64 4 22 1280 1580
17 D7 51 7 37 800 1000
18 D8 55 13 40 640 665
19 **D9 75 8 47 600 600

P-value 0.75 0.16 0.14 0.047 0.062

*UPDRS, Unified Parkinson’s Disease Rating Scale

**D9, this subject did not complete all trials

TABLE III

ATTRIBUTES SET

Fast speed Slow speed
No noise Noise No noise Noise

Off medication 1© 2© 3© 4©
On medication 5© 6© 7© 8©

misclustered into a cluster which is more like a DPD cluster.

In DPD (11-18), DPD subject 17, 18 are also misclusterted

into the other cluster which is more like a NDPD cluster. So

the accuracy of clustering equals 77.8%.

In order to find out which attributes are more contributive

for clustering NDPD and DPD, we selected 6 different

attribute sets respectively. In Table III, dataset attributes

of slow speed (SS) condition are 3© 4© 7© 8©, likewise fast

speed (FS) condition 1© 2© 5© 6©, noise (With-N) condition
2© 4© 6© 8©, no noise (No-N) condition 1© 3© 5© 7©, off medica-

tion condition (OFF-M) 1© 3© 3© 4©, on medication condition

(ON-M) 5© 6© 7© 8©.

Fig. 3(b) and (c) show the results of using SS and FS

conditions, and the clustering accuracy is 66.7% and 77.8%,

respectively. Fig. 3(d) and (e) show the results of using With-

N and No-N conditions, and the clustering accuracy is 77.8%

and 55.6%, respectively. Fig. 3(f) and (g) show the results

of using OFF-M and ON-M conditions, and the clustering

accuracy is 66.7% and 66.7%, respectively. From above

results, the accuracy of using FS and With-N conditions is

best (Accuracy = 77.8%), i.e. clinically it is relatively easier

to separate NDPD and DPD subjects under FS and With-

N conditions. This result is consistent with previous studies

which reported that subjects with dyskinesia are generally
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 (e). No Noise

Subject             Acc: 55.6%, Dist: 20.74
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DPD

DPDNDPD

NDPD

NDPD

NDPD
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DPD

DPD

DPD
DPD

DPD

Fig. 3. The results of clustering using tracking root mean square (RMS)
errors. “ACC” is the accuracy of clustering, “Dist” is squared Euclidean
distance between centroids of two clusters (DCC).

more responsive to dynamic changes in motor task in which

causes larger RMS tracking error.

As for Off-M and On-M conditions, although they had

the same accuracy, for the distance between centroids of two

clusters (DCC), Off-M case is better than On-M case because

the DCC of Off-M is larger, which means the two clusters

are separated slightly better, and this results also support our

previous statistical conclusion [13] that L-dopa medication

is able to improve tracking performance so that it is harder

to classify under the On-M case. In addition, we also made

some combinations, such as a combination of FS and With-

N, FS and No-N, or Off-M and With-N and so on, but all

the results are not better than before (accuracy = 77.8%), so

attributes shown in Fig. 3 are representative for clustering.

In the results of clustering, subject 3, 17, 18 always

are misclustered. NDPD subject 3 is always clustered into

the DPD cluster, inversely DPD subject 17, 18 are always

clustered into the NDPD cluster, i.e. tracking performance of

NDPD subject 3 is more like DPD, and tracking performance

of DPD subject 17, 18 is more like NDPD. However, corre-

sponding UPDRS scores (Table II) of those three subjects

could be a reason why they are misclustered. In NDPD

group, the UPDRS score subject 3 is much higher than

others, which means the subject would have more serious

−30 −20 −10 0 10 20 30 40 50
−10

−8

−6

−4

−2

0

2

4

6

8

10

1st Principal Component

2n
d 

Pr
in

ci
pa

l C
om

po
ne

nt

11
2

4
18

17 7 105

18

14

16

9

6

13

12

15

3

Mistake

Mistake

Outlier
Mistake

NDPD DPD

Fig. 4. Subspace with Principal Components

TABLE IV

EIGENVECTORS OF THE FIRST THREE PRINCIPAL COMPONENTS.

speed noise attribute ID pc1 pc2 pc3
FS LN 87 0.287 -0.235 0.243
FS LN 91 0.243 -0.07 0.154
FS LN 85 0.235 -0.357 0.161
FS SN 47 0.231 0.023 -0.468
FS LN 89 0.22 -0.284 -0.028
FS MN 67 0.212 0.056 -0.01
FS LN 95 0.208 0.066 -0.101
FS MN 71 0.207 0.073 0.229
FS LN 93 0.186 -0.155 -0.103
FS MN 63 0.179 -0.044 0.025
FS SN 39 0.175 -0.153 0.14
FS MN 69 0.166 -0.031 -0.018
SS LN 79 0.164 0.231 0.032
SS MN 51 0.161 0.095 0.282
SS LN 81 0.157 0.3 -0.027

motor disorder though he is diagnosed as NDPD. Likewise,

subject 17, 18 have relatively lower UPDRS score in the DPD

group. Diagnosing NDPD and DPD is a clinically subjective

decision based on patients’ symptoms, and this result might

assist doctors to make a decision more objectively.

In order to support the conclusion of clustering from the

perspective of data, we also conducted Principal Components

Analysis (PCA) to find the effective attributes to distinguish

NDPD from DPD. During PCA, we found that there is an

outlier, i.e., one of the NDPD subject (ND3) as shown in

Figure 4. We removed the subject from the dataset and

performed K-mean algorithm in a subspace with principal

components.

Table IV shows eigenvectors of the first three principal

components. The first principal component has more weight

on attributes of FS and LN attributes compared to the others.

Table V shows the clustering accuracy and DCC in the

subspace. In order to see how the data mining technique

supports statistical analysis, we compared the DCC cluster

distance and p-value by t-test on the average RMS tracking

error of both NDPD and DPD subjects. For example, the

difference of RMS tracking error of NDPD and DPD is not
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TABLE V

P-VALUE AND K-MEANS.

Condition # of Attributes Distance Accuracy P-value
All 96 41.47 76.47%
Slow 48 23.53 70.59% 0.041
Fast 48 35.14 82.35% 0.049
No-N 24 9.12 64.71% 0.429
With-N 72 41.38 82.35% 0.026
OFF-M 48 31.71 76.47% 0.028
ON-M 48 29.85 76.47% 0.132

significant (p-value > 0.05) in No-N and ON-M cases; thus,

the DCC is relatively smaller than the other. On the other

hand, the difference of RMS tracking error of NDPD and

DPD is significant (p-value ≤ 0.5) in SS, FS, With-N and

OFF-M cases. The DCC is relatively larger than the other,

which leads to the higher clustering accuracy. Besides, we

observed the higher clustering accuracy in FS and With-

N cases compared to other cases. This result indicates that

NDPD and DPD patients have different ability to respond to

visual tracking cues. Note that there is an exception in all

case that the DCC is larger than the other because the number

of principal components (e.g., 95% of variance contribution)

is bigger than that of the other cases.

B. Decision Tree Classification

Next, we applied the decision tree classification algorithm

to classify NDP and DP based on subjects characteristics

(Table II). Although previous studies demonstrated that there

was no significant difference (p-value > 0.05) in each char-

acteristic except converted daily L-dopa dosage (p-value=

0.047), we still jointly combined all characteristics, “Age,

“Years Since Diagnosis”, “UPDRS”, “Converted Daily L-

dopa Dosage”, “L-dopa Equivalent Daily Dose”, to indicate

whether this combination could classify these two groups or

not. Here, we did not use a clustering algorithm, because of

different units, if we applied K-means, these attributes (char-

acteristics) need to be normalized so that attributes would

not have original meaning. To preserve original meaning of

characteristics, decision tree is one of the most appropriate

algorithms in healthcare and medicine fields.

As a supervised method, decision tree would label DPD

and NDPD automatically, so we know which node is NDP

or DP from the result shown in Fig. 5. The decision tree

classify NDPD and DPD perfectly based on subjects char-

acteristics. Then we used the leave-one-out cross validation,

(i.e. iteratively using 18 subjects to build the model and 1

subject to test the model) the accuracy is 68.4%. Table VI

demonstrates rules of the decision tree.

According to the structure of the decision tree (roughly

indicates attributes ranking), the first level is “years since

diagnosis”, which indicates that in the model the years since

diagnosis is the most crucial factor for classification of

NDPD and DPD. The “L-dopa Equivalent Daily Dose” and

“Age” are not in the model, which means they are not the

main factors in classifying between NDPD and DPD.

Fig. 5. Decision Tree. The split criterion is GainRATIO. “D” stands for
DPD subjects, and “ND” stands for NDPD subjects. The result shows NDPD
and DPD are perfectly classified by using three of five characteristics.

TABLE VI

THE DECISION TREE RULES.

Years since diagnosis > 12.500: D {ND=0, D=4}
Years since diagnosis ≤ 12.500
| Converted Daily L-dopa Dosage(mg) > 870: D {ND=0, D=3}
| Converted Daily L-dopa Dosage(mg) ≤ 870
| | UPDRS > 34
| | | Years since diagnosis > 8.500: ND {ND=4, D=0}
| | | Years since diagnosis ≤ 8.500: D {ND=0, D=2}
| | UPDRS ≤ 34: ND {ND=6, D=0}

IV. CONCLUSIONS

Our results indicate that data mining techniques have

potential in healthcare and biomedicine. They allow us to

analyze visually-guided tracking performance and identify

which conditions are effective to cluster PD subjects into

non-dyskinesia and dyskinesia subgroups, and which char-

acteristics are primary and secondary to classify. We utilized

two data mining techniques, K-means clustering algorithm

and Decision tree classification algorithm. For K-means, we

used RMS tracking error as attributes to cluster two groups

in unsupervised fashion, in which we found that under fast

speed and with noise conditions, it is effective to cluster

these into two groups. Moreover, we studied how data mining

and statistical analysis complement each other by looking at

clustering result (e.g., DCC) and statistical significance (e.g.,

p-value of t-test) of the tracking performance dataset.In addi-

tion, For the decision tree, we used subjects characteristics to

classify two groups with NDPD/DPD label, and the accuracy

is 68.4% with leave-one-out cross validation which is lower

than the accuracy of tracking performance clustering, 77.8%,

so clinically tracking performance assessment is better than

demographic characteristics while differentiating NDPD and

DPD. Thus, we can use results of data mining to support
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decision making on patients with NDPD or DPD. The small

number of studied subjects is a limitation, and in future work

we will extend the pool of researched subjects to achieve

more general conclusions.
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