
Privacy preserving health data processing

Anders Andersen
Department of Computer Science

Faculty of Science and Technology
UiT The Arcic University of Norway

9037 Tromsø, Norway
Email: Anders.Andersen@uit.no

Kassaye Yitbarek Yigzaw
Department of Computer Science

Faculty of Science and Technology
UiT The Arcic University of Norway

9037 Tromsø, Norway
Email: Kassaye.Y.Yigzaw@uit.no

Randi Karlsen
Department of Computer Science

Faculty of Science and Technology
UiT The Arcic University of Norway

9037 Tromsø, Norway
Email: Randi.Karlsen@uit.no

Abstract—The usage of electronic health data from different
sources for statistical analysis requires a toolset where the legal,
security and privacy concerns have been taken into consideration.
The health data are typically located at different general practices
and hospitals. The data analysis consists of local processing at
these locations, and the locations become nodes in a computing
graph. To support the legal, security and privacy concerns,
the proposed toolset for statistical analysis of health data uses
a combination of secure multi-party computation (SMC) algo-
rithms, symmetric and public key encryption, and public key
infrastructure (PKI) with certificates and a certificate authority
(CA). The proposed toolset should cover a wide range of data
analysis with different data distributions. To achieve this, large
set of possible SMC algorithms and computing graphs have to
be supported.

I. INTRODUCTION

In this paper an approach for analyzing health data from
different general practices and hospitals that take into con-
sideration legal, security and privacy issues is presented and
discussed. The approach combines secure multi-party compu-
tation (SMC) algorithms [1], [2] with symmetric and public
key encryption, public key infrastructure (PKI), certificates,
and a certificate authority (CA).

The work is done in the context of the Snow SMSC (Secure
Multi-party Statistical Computations) project. Snow SMSC is
based on earlier work on the Snow system [3], which is used
in data extraction for disease surveillance. In the Snow SMSC
project health data from health institutions in Norway are
aggregated and analyzed.

An example of a situation where the patient’s privacy
should not be infringed is the task of analyzing the usage of
certain medications at all health institutions in a region based
on sparse data. When collecting statistical data for this task, an
unwanted effect could be the ability to identify the most likely
patient using some specific sort of medication. This would be
the case if the data comes from one health institution (e.g. a
general practice) with few patients matching the typical user
of such medications. For example if the data shows that only
one patient at that general practice is subscribed medication a
that is typical for multiple sclerosis (MS) patients, and only
one patient at that general practice has visible symptoms of
MS. When such data is part of a computation or analyzing
task, special care has to be taken to ensure the privacy of the
patients.

II. REQUIREMENTS

The outcome of SMC research [4] will in combination with
cryptography be used to address legal, security and privacy
issues. The constraints for SMC discussed in [5] combined
with a practical and efficient implementation [6] are the basis
for our work. Secure disease surveillance might enforce other
requirements [7] that should be considered in future work.

In [5], SMC for N institutions with different data sets who
wish to evaluate a result r (e.g. the correlation of usage of
medication x and the adverse effect y) based on the data sets
is subject to four constrains:

C1: The correct value result r is obtained and known to
all institutions.

C2: No institution learns more about the other institutions
values than it can deduce from its own data set and
the result r.

C3: No trusted third party—human or machine—is part of
the process.

C4: Semi-honesty. Institutions perform agreed upon com-
putations correctly using their true data. However,
they are permitted to retain the results of intermediate
computations.

For practical purposes, the zero information disclosure
implied by C3 is sometimes difficult to implement efficiently
[6]. In the context of the Snow SMSC project we will use the
following relaxed constrain replacing C3:

C3’: No human or machine is allowed to have access to
both the patient identifier, and data of that patient not
previously known.

To fulfill the requirements, a combination of SMC algo-
rithms and careful usage of encryption and certificates are
used. The approach is based on a coordinator that prepares the
computation and a set of sub-processes (nodes) representing
the parties in the multi-party computation. In this paper the
focus is the combined usage of SMC algorithms and cryptog-
raphy to achieve privacy.

In [8] the privacy concerns and how this is implemented is
discussed, and in [9] the focus is how to use SMC to process
distributed health data. In [10] a complete architecture for SMC
in healthcare environments is discussed.

2014 IEEE 16th International Conference on e-Health Networking, Applications and Services (Healthcom)

978-1-4799-6644-8/14/$31.00 ©2014 IEEE 170

III. SECURE MULTI-PARTY COMPUTATIONS

Secure multi-party computation (SMC) deals with the
problem of a set of nodes P = {n1, n2, . . . , nm} jointly
computing an arbitrary function f(. . .) on their private input,
while ensuring security properties, such as input privacy and
correctness of output. The security properties should be pre-
served even in the face of an adversary that controls a subset
of the institutions and wish to attack the computation [11].

The first step to preserve privacy is to choose an algorithm
that matches the four constrains presented above. SMC algo-
rithms ensure that each participant performing a sub-process
is unable to learn about the other participants input data and
intermediate results.

For example, to calculate the mean value of N numbers
from N participants, the participants can be ordered in a chain
where each participant receives a value from the previous
participant in the chain, adds its number to the value, and
forwards the new value to the next participant in the chain.
If the first participant in the chain starts with the value 0 and
adds its number to the value, the last participant can calculate
the mean value by adding its number to the value received
and dividing the value by N . If we add a coordinator to the
beginning and the end of the chain, the coordinator can send
the value 0 to the first participant and calculate the mean
value at the end of the chain. Figure 1 illustrates this chain
(computation graph) where nc is the coordinator and n1, n2,
and n3 are the participants. r0 is the initial value 0, xi is
the number of participant ni, ri is the intermediate results
from participant ni, {ri} is the message from participant ni

to participant ni+1, and m is the calculated mean value.

This solution does not preserve privacy. For example, the
value participant 2 receives is equal to the number x1 of
participant n1. To preserve privacy the participants should not
be able to deduce the private numbers’ of the other participants.
In an SMC version of this algorithm that preserves the privacy
of the participants, step 0© and 4© are replaced with the
following versions (rand() generates a large unique random
number):

0© r0 = rand()

4© m =
r3 − r0

3

Since r0 is a large random number unknown to the partici-
pants, there is no way for them to deduce the other participants’
numbers from the values (intermediate results) they receives.

In Figure 1, a computation graph with 4 nodes nc, n1, n2,
and n3 is shown. The figure includes the nodes, the messages
(the edges of the directed graph labeled with the content of the
messages inside curly braces), and the processing at each node
(inside rectangular boxes labeled to order them). Such graph
representation can be used to illustrate a large number of SMC
algorithms. In [8] a syntax to specify such graphs is presented.
This graph representation is used at the coordinator to construct
the computation graph and distribute this information to the
nodes. We will later see that at each node only information
about the neighbour nodes in the graph is revealed.

TABLE I. THE NOTATION USED FOR ENCRYPTION AND SIGNING.

{m} A message containing m

s{m} m encrypted with secret key s

{m}p m encrypted with public key p

{m}a m signed by a

{m}ap m signed by a and encrypted with public key p

{a, p}c CA c binds public key p to identity (address) a

A→ B : {m} Message {m} sent from A to B

IV. MESSAGE ENCRYPTION

To make the SMC example above privacy preserving,
the messages have to be encrypted in such a way that only
the intended receiver can read its content. For example, if
an attacker is able to read the content of message {r0}
and message {r1}, the number x1 of node n1 is exposed
(x1 = r1−r0). The coordinator is responsible for constructing
the computation graph, and as part of this process provide
the necessary information for the nodes to be able to properly
encrypt the messages they create and forward.

Each node has its own public/private key pair. These keys
are used to encrypt and decrypt the messages to the node. The
content of each message is actually encrypted using symmetric
encryption. The secret key of the symmetric encryption is fresh
and unique for this message. The secret key of the message
is encrypted with the public key of the intended receiver and
included in the message. If s is the secret key of a message
with content m and the intended receiver has the public key p
then this is the complete encrypted message:{

{s}p, s{m}
}

The notation1 used is described in Table I. The intended
receiver first decrypts {s}p using its private key. It can then
use s to decrypt s{m} to be able to access m. Since only the
intended receiver has access to its private key, the content m
of the message is only accessible to that node. The usage of
symmetric encryption is an implementation detail. To simplify
the notation in the following text, messages like the one above
will be denoted like this:

{m}p

For a node to be able to create encrypted messages to the
next nodes in the computation graph, the message it receives
has to include the addresses and public keys of these nodes.
For each of the next nodes in the computation graph it receives
the address n, the public key p, and an information blob b.
The information blob b is encrypted with the receiving nodes’s
public key at it is therefore not readable by the current node.
It should be forwarded to the receiving node unmodified. The
current node receives a similar information blob encrypted by
its public key. This information blob contains the addresses,
public keys, and information blobs of the next nodes in the

1The notation used in this paper is inspired by the notion found in [12],
[13], and [14]. In [13] square brackets are used for encryption and decryption
using the private key in a public key crypto system. The notation {m}a used
in this paper to sign a message could with the square bracket operation with
private key notation be equal to {m, [h(m)]a}, where h is a cryptographic
hash function.

2014 IEEE 16th International Conference on e-Health Networking, Applications and Services (Healthcom)

171

n1 1© r1 = r0 + x1

n2

2© r2 = r1 + x2

n33© r3 = r2 + x3

nc

0© r0 = 0

4© m =
r3
3

{r0}

{r1}{r2}

{r3}

Fig. 1. Calculating the mean value m with three participants n1, n2, and n3 and a coordinator nc.

computation graph. Using this approach, the message between
node n1 and n2 in Figure 1 should be the following:

n1 → n2 :
{
{r1}p2

, b2

}
, where b2 = {n3, p3, b3}p2

The first part of the message {r1}p2
is generated by node

n1 using the public key p2 of node n2 received in the
information blob b1 in the message to node n1. The second
part of the message b2 was generated by the coordinator and
is forwarded by node n1 without modification. Since this
blob was encrypted with the public key of node n2 at the
coordinator, node n1 have no way to access its content. When
node n2 receives the message it can use its private key to
decrypt both part of the message. It can then get access to the
intermediate result r1 from node n1 and the information about
the next nodes found in b2. This information is then used to
perform the processing at node n2, and create and forward the
message to node n3.

V. PKI AND CERTIFICATES

Using public-key encryption will protect the content of the
messages intended for a given node. The problem is that the
receiver can not trust the content. Anyone with access to the
public key of a node can create a fake message that can be used
to get access to data from this node. For example, if node n1 in
Figure 1 is compromised, it can create the following message
for node n2:

n1 → n2 :
{
{y}p2

, b2

}
, where b2 = {n1, p1, . . .}p2

In this attack the second part of the message b2 was created
by the compromised node n1 and not by the coordinator. The
compromised node inserted its own address and public key
into b2. The consequence is that node n2 will perform its
calculation and return the result to node n1. The compromised
node n1 can then calculate the number x2 of node n2:

x2 = r2 − y

It is also possible for unknown nodes to generate such
messages to reveal data from a node. This demonstrates that

authenticity and integrity is important in a system like this.
The receiver of a message has to be assured that the message
is received from an expected node in the computation and that
the message has not been altered.

To achieve this a public key infrastructure (PKI) with
digital certificates are introduced. We will in this paper not
describe a PKI in detail but focus on how the certificates
provided and managed by the PKI can be used to ensure
the privacy in Snow SMSC. A certificate is a digital signed
document that binds a public key to an identity. This is
important for digital signatures. If a document (or some data)
is signed, the signature can be validated by the public key
of the signee. If this public key came from a certificate, the
signature can be verified towards the identity. We can trust
the certificates since they are signed by a certificate authority
(CA). Conceptually, we can think of the certificate of a node
as a message signed by the CA that contains both the address
(identity) and the public key of the node. In this example the
CA c binds address ni to public key pi.

{ni, pi}c

To be able to verify the certificates of the nodes, we will
assume that the certificate of the CA is preinstalled on all
nodes and that the CA is trusted.

The important part of introducing PKI and certificates is
that we can sign and validate the information exchanged in
the messages in Snow SMSC. If information that is digitally
signed is modified the signature will not match the information
and we can not verify that the information originated from the
claimed sender. The signature is verified before the message
is interpreted. {m}a is the notation used for a message {m}
that is signed by a and can be verified by the public key pa
of a. A notation for a message that is both signed by a sender
and encrypted with the public key of the receiver also exists.
The following message {m} is encrypted with the public key
pu and its signature can be verified by public key of v:

{m}vpu

2014 IEEE 16th International Conference on e-Health Networking, Applications and Services (Healthcom)

172

nc

0© x̄ = . . .
ȳ = . . .

2© r = . . .

n31©
u3 = . . .
v3 = . . .
w3 = . . .

{x̄, ȳ}

{u3, v3, w3}

n2

1©
u2 = . . .
v2 = . . .
w2 = . . .

{x̄, ȳ} {u2, v2, w2}

n1 1©
u1 = . . .
v1 = . . .
w1 = . . .

{x̄, ȳ}

{u1, v1, w1}

Fig. 2. Calculating Pearson’s r of n samples of two variables x and y at 3 health institutions.

The signature of a message is verified to check the authen-
ticity and integrity of the message. It is also important to verify
that a message is part of the computation and that it was the
intention of the coordinator that this message should be sent
from the sender to the receiver. In other words, the message is
part of the planned computation graph. So far we have ignored
that this information should be included in the information
blob generated by the coordinator for the current node. The
actual message from node n1 to node n2 in the example in
Figure 1 with encryption, signatures and the information about
the intended sender be like this:

n1 → n2 :
{
{r1}p2

, b2

}n1

Where:
b2 =

{
{n1, p1}c, {n3, p3}c, b3

}nc

p2

The complete message is signed by node n1. The information
blob b2 is signed by the coordinator nc and encrypted with
p2, the public key of node n2. Since b2 was generated and
encrypted at the coordinator we can be ensured that the infor-
mation found here include the intentions of the coordinator.
The first element in b2 is the coordinator’s information to n2

about who this message should be received from. Node n2

should verify the signature of the complete message towards
the information in this certificate. The rest of the elements in
b2 is concerned with the following nodes in the computation
graph. The second element is the certificate that contains the
address and the public key of node n3. The last element is the
information blob b3 that n2 is going to forward unmodified to
node n3. The trust we can establish from this is the following:

(i) The complete message originates from node n1 since
it is signed by n1.

(ii) The message was expected to come from node n1

since the first element of b2 is the certificate of node
n1 signed by CA c.

(iii) The information blob b2 originates from the coordina-
tor since it is signed by the coordinator nc.

(iv) The information blob b2 is created for n2 since it
is encrypted with its public key p2. It can also be
concluded that this was the coordinator’s intention
since the encrypted b2 is signed by the coordinator.

Every message and information blob in Snow SMSC are
encrypted and signed as illustrated in the example above. This
ensures the authenticity and integrity of the messages and their
content.

VI. AN EXAMPLE

The calculation of the Pearson product-moment correlation
coefficient (Pearson’s r) on horizontally partitioned dataset2 is
used as an example. The actual calculation is not important
for the example, but it is included for completeness. The
computation graph in Figure 2 shows the nodes, the messages
and the processing needed to follow the example. Pearson’s r
is used to measure the correlation (linear dependence) between
n samples of two variables x and y:

r =

∑n
i=1 (xi − x̄)(yi − ȳ)√∑n

i=1 (xi − x̄)2
∑n

i=1 (yi − ȳ)2

In the case of m health institutions with sj samples of xji and
yji at each institution, r can be rewritten like this:

r =

∑m
j=1

∑sj
i=1 (xji − x̄)(yji − ȳ)√∑m

j=1

∑sj
i=1 (xji − x̄)2

∑m
j=1

∑sj
i=1 (yji − ȳ)2

At each node j the following three intermediate results have
to be calculated:

1©
uj =

∑sj
i=1 (xji − x̄)(yji − ȳ)

vj =
∑sj

i=1 (xji − x̄)2

wj =
∑sj

i=1 (yji − ȳ)2

2In a horizontally partitioned dataset each institution has all variables of
different entities.

2014 IEEE 16th International Conference on e-Health Networking, Applications and Services (Healthcom)

173

n1 1©
u1 = u0 + . . .
v1 = v0 + . . .
w1 = w0 + . . .

n2

2©
u2 = u1 + . . .
v2 = v1 + . . .
w2 = w1 + . . .

n33©
u3 = u2 + . . .
v3 = v2 + . . .
w3 = w2 + . . .

nc

0© x̄ = . . . ; ȳ = . . .
u0 = . . . ; v0 = . . . ; w0 = . . .

4© r = . . .

{
{x̄, ȳ, u0, v0, w0}p1 , b1

}nc

{
{x̄, ȳ, u1, v1, w1}p2 , b2

}n1
{
{x̄, ȳ, u2, v2, w2}p3 , b3

}n2

{
{x̄, ȳ, u3, v3, w3}pc , bc

}n3

Fig. 3. Calculating Pearson’s r of n samples of two variables x and y at 3 health institutions without exposing the intermediate results.

The initial mean values x̄ and ȳ can be securely calculated 0©
using an approach similar to the SMC example calculating the
mean value in Section III. When all intermediate results are
received at the coordinator, Pearson’s r can be calculated:

2© r =

∑m
j=1 uj√∑m

j=1 vj
∑m

j=1 wj

Figure 2 illustrates the computation graph for this problem
with 3 health institutions before encryption, digital signatures
and certificates are introduced.

The messages between the coordinator and the health
institutions will be similar. For any health institution nj the
message from the coordinator nc to node nj will be the
following when encryption, digital signatures and certificates
are introduced:

nc → nj :
{
{x̄, ȳ}pj

, bj

}nc

,

where

bj =
{
{nc, pc}c, {nc, pc}c, bc

}nc

pj

The interesting part here is the content of bj . The first element
tells node nj that it was the intention that this message should
arrive from nc. The second element tells node nj that the
next node in the computation graph is nc. After node nj

has calculated uj , vj and wj , it generates and forwards the
following message to nc:

nj → nc :
{
{uj , vj , wj}pc , bc

}nj

,

where
bc =

{
{nj , pj}c

}nc

pc

The information blob bc only contains one element since there
are no next nodes in the computation graph. The coordinator
uses bc to verify that this message was intended for the
coordinator before it collects the data. After the coordinator
has received similar messages from all health institutions it
uses the data to calculate the Pearson’s r for x and y.

The argument for privacy preserving in this example is
similar to the one in the previous example. However, if the
intermediate results uj , vj and wj are considered private
it is easy to see from the computation graph in Figure 2
and processing step 2© that the values will be exposed at
the coordinator nc. This is solvable since the first thing the
coordinator has to do in step 2© is to summarize all the values
received from the nodes. Instead of sending these values to the
coordinator directly, a similar approach to the one done when
calculating the mean value in the example from Figure 1 can be
selected. First we generate three large unique random numbers
u0, v0, and w0 at the coordinator 0©. These numbers are sent,
together with the mean values x̄ and ȳ, as intermediate results
to the first node n1. At each node ni the following calculations
are performed (1©, 2©, and 3©):

uj = uj−1 +
∑sj

i=1 (xji − x̄)(yji − ȳ)

vj = vj−1 +
∑sj

i=1 (xji − x̄)2

wj = wj−1 +
∑sj

i=1 (yji − ȳ)2

When the calculations are performed, node ni generates and
forwards the following message to node ni+1:

ni → ni+1 :
{
{x̄, ȳ, ui, vi, wi}pi+1 , bi+1

}ni

Finally, the coordinator nc receives the values u3, v3, and w3.
To get the real value used to calculate Pearson’s r, the random

2014 IEEE 16th International Conference on e-Health Networking, Applications and Services (Healthcom)

174

numbers u0, v0, and w0 has to subtracted from u3, v3, and w3,
respectively. The coordinator calculates Pearson’s r 4©:

4© r =
u3 − u0√

(v3 − v0)(w3 − w0)

VII. EVALUATION

Semi-honest adversary is one of the commonly considered
adversarial behaviors in SMC, where each node is assumed
to follow the protocol, but they might try to extract privacy
sensitive information from the messages exchanged during
the computation. The secure summation protocol used in this
article to calculate mean values also assumes a modified form
of semi-honest adversary. Semi-honest adversarial behavior
can be acceptable among healthcare institutions where the
institutions can be trusted to follow the protocol.

Unlike the conventional semi-honest adversary model, the
protocol has a mechanism to enforce the execution of the
protocol in the order specified by the computation graph.
The graph contains a message (blob) to each node, signed
by the coordinator, that specifies the previous and next nodes
in the computation. The graph can not be modified without
invalidating the signature. Therefore, the protocol can only be
executed in the order specified by the coordinator.

If any node uses different values than its true values, the
protocol cannot ensure correctness of output. The protocol
assumes that the nodes use their true values in the computation.

The protocol can be vulnerable for collision attack by two
nodes. For instance, in Figure 1, if node n1 and node n3 collide
they will know the value of node n2. The protocol assumes
any two nodes will not collide. However, since the computing
graph is generated by a coordinator, computing nodes only
have knowledge about their predecessor and successor nodes
that makes collusion difficult. In addition, if a coordinator node
creates a computing graph in a way the next node is itself, it
is possible to learn other node’s value. The protocol is privacy
preserving on the assumption that a coordinator generates the
correct graph. These kinds of assumptions can be acceptable
among health institutions.

VIII. CONCLUSION

It has been demonstrated that a combination of SMC,
encryption and PKI can be used to perform privacy-preserving
statistical analyses on distributed health data. A layered struc-
ture of the computation graph has been proposed, where each
layer is encrypted and signed and can be revealed and verified
one layer at the time through the computation steps.

A coordinator specifies the secure protocols as a compu-
tation graph. Each step in the computation is represented as
layers, where the first layer is the outermost layer. At each
node the one layer can be revealed using the private key of the
node. The next layers are inaccessible since they are protected
by the next nodes private keys.

The computation graph is included in the messages be-
tween the nodes. The graph is revealed step by step in the

process of performing the distributed computation. In a node
the accessible layer of the graph is used to verify both that
the originator of the received message and the next nodes
were the intention of the coordinator. The signed intermediate
results received can, by verifying the signature, be verified
to originate from the sender of the received message (that is
already verified to be the intended sender by coordinator).

The example in Section VI demonstrates the computation
of Pearson’s r based on the idea of decomposing an equation
into a set of sub-computations, which are in summation form,
and each sub-computation is computed using a secure protocol.
Similarly, a large number of linear and non-linear statistical
problems can be decomposed into a set of sub-computations
of summation forms [15]. Therefore, the method described
in the paper can be applied for a large number of statistical
computations.

REFERENCES

[1] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental
game, or a completeness theorem for protocols with honest majority,”
in Proceedings of the nineteenth annual ACM symposium on Theory of
computing. New York: ACM, 1987, pp. 218–229.

[2] A. C. Yao, “Protocols for secure computations,” in Proceedings of the
23rd Annual Symposium on Foundations of Computer Science. New
York: ACM Press, 1982, pp. 160–164.

[3] J. G. Bellika, G. Aronsen, M. A. Johansen, G. Hartvigsen, and G. S.
Simonsen, “The snow agent system: A peer-to-peer system for disease
surveillance and diagnostic assistance,” Advances in Disease Surveil-
lance,, vol. 4, p. 42, 2007.

[4] S. Goldwasser, “Multi party computations: past and present,” in
PODC’97, Proceedings of the sixteenth annual ACM symposium on
Principles of distributed computing. New York: ACM, 1997, pp. 1–6.

[5] A. F. Karr, “Secure statistical analysis of distributed databases, empha-
sizing what we don’t know,” Journal of Privacy and Confidentiality,
vol. 1, no. 2, pp. 197–211, 2009.

[6] W. Du and Z. Zhan, “A practical approach to solve secure multi-party
computation problems,” in Proceedings of the 2002 workshop on New
security paradigms. New York: ACM, 2002, pp. 127–135.

[7] K. E. Emam, J. Hu, J. Mercer, L. Peyton, M. Kantarcioglu, B. Malin,
D. Buckeridge, S. Samet, and C. Earle, “A secure protocol for protecting
the identity of providers when disclosing data for disease surveillance,”
J Am Med Inform Assoc, vol. 18, pp. 212–217, 2011.

[8] A. Andersen, “An implementation of secure multi-party computations
to preserve privacy when processing EMR data,” in The International
Conference on Privacy, Security and Trust (PST 2013), 2013.

[9] ——, “Using secure multi-party computation when pocessing dis-
tributed health data,” in The 2013 International Conference on Security
and Management (SAM’13), 2013.

[10] K. Y. Yigsaw, J. G. Bellika, G. Hartvigsen, and A. Andersen, “Towards
a privacy preserving computation on distributed health records,” in
Middleware Doctoral Symposium 2013, 2013.

[11] Y. Lindell and B. Pinkas, “Secure multiparty computation for privacy-
preserving data mining,” Journal of Privacy and Confidentiality, vol. 1,
no. 1, pp. 59–98, 2009.

[12] C. Kaufman, R. Perlman, and M. Speciner, Network Security: Private
Communication in a Public World, 2nd ed. Prentice Hall, 2002.

[13] M. Stamp, Information Security: Principles and Practice. John Wiley
& Sons, 2012.

[14] M. Burrows, M. Abadi, and R. Needham, “A logic of authentication,”
ACM Transactions on Computer Systems, vol. 8, pp. 18–36, 1990.

[15] C. T. Chu, S. K. Kim, Y. A. Lin, Y. Yu, G. R. Bradski, A. Y. Ng,
and K. Olukotun, “Map-reduce for machine learning on multicore,” in
NIPS. The MIT Press, 2006, pp. 281–288.

2014 IEEE 16th International Conference on e-Health Networking, Applications and Services (Healthcom)

175

