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Abstract—The anatomical and functional characterization of
neuronal assemblies (NAs) is a major challenge in neuroscience.
Principal component analysis (PCA) is a widely used method
for feature detection, however, when dealing with neuronal data
analysis, its limitations have not yet been fully understood. Our
work complements previous PCA studies which, in general,
characterise NAs based solely on excitatory neuronal interactions.
We analysed the performance of PCA in two neglected scenarios:
assemblies containing patterns of neural interactions 1) with
inhibition and 2) with delays. The analyses considered two types
of artificially generated data, one drawn from a traditional
poissonian model, and the other drawn from a latent multivariate
Gaussian model; in both models, data from a behaving Wistar rat
was used for parameter tuning. OQur results highlight scenarios
in which neglecting complex interactions between neurons can
lead to false conclusions when using PCA to detect NAs. Also,
we reinforce the importance of more realistic simulations in the
evaluation of neuronal signal processing algorithms.

Index Terms—Neuronal Assemblies: Principal Component
Analysis (PCA)- Neural Simulation-

I. INTRODUCTION

In his book, Hebb [1] proposed that the interactions es-
tablished between different neurons (synapses) were the basis
of associative learning, and that modifications at cellular level
would result in metabolic changes, leading to alterations in the
activity pattern of a spatially distributed “assembly of nerve
cells”. The Hebbian synapse consists of a time-dependent,
highly local and strongly interactive mechanism that increases
synaptic efficiency as a function of the correlation between the
presynaptic and the postsynaptic activities [2].

Hebb’s description has led to the neuronal assembly (NA)
hypothesis that defines a whole population - and not a single
neuron- as the fundamental brain unit in functional signal pro-
cessing [3, 4, 5]. The theory states that a single neuron, being
naturally unstable due to the fluctuations of the thousands
of inputs it receives per second, could not account for the
complex computational processes in the brain and some of its
phenomena, such as redundancy and learning[6, 7, 8].

The NA hypothesis has been extensively discussed in the
scientific community, since it connects to a series of psy-
chological and physiological phenomena [7]. However, the
experimental confirmation of the existence and operation of
assemblies is one of the major challenges of neuroscience [5].

To study NA, one first needs to simultaneously record from
a large number of neurons, a challenging task which has
progressed significantly in recent years [3, 5, 9]. This data is
then processed taking into account a pre-established pattern

of neuronal interactions, i.e., a metric based on a specific
aspect of neuronal activity and which defines the formation
or suppression of neuronal assemblies over time. Examples
include covariance of mean firing rates [10, 11, 12, 13],
coincident spiking times [4, 10, 11], and mutual information
[10, 11, 14]. Finally, possible neuronal clusters are identified
with respect to the chosen metric.

A popular method for assembly detection is principal
component analysis (PCA) [15, 16, 17]. In previous stud-
ies employing neural simulation only synchronous excitatory
interactions between neurons, as captured by the covariance
of their mean firing rates, were considered [12, 13]. We
complement these studies by analysing the performance of
PCA in two, to the best of our knowledge, seldom explored
scenarios: assemblies defined by patterns of neural interactions
1) with inhibition and 2) with delays. Likewise the excitatory
case, inhibitory and time-delayed interactions also relate to
Hebbian interactions [18, 19] and have been found in cortico-
cortical and cortico-subcortical circuits [20, 21, 22].

We perform our analyses using two biologically plausible
artificial spike train generation methods, one based on a homo-
geneous poissonian model [12, 13], the other relying on a la-
tent multivariate Gaussian model [23]. Both models are tuned
using data recorded from a behaving Wistar rat. We evaluate
PCA response to simulated data that has a specified correlation
structure, establishing a relation between its performance and
real data statistics. In addition, our results contribute to define
the conditions in which PCA is an appropriate algorithm for
neuronal assembly detection.

This paper is organized as follows: Section II brings an
overview of the PCA algorithm; Section III describes the
experiments and their implementation procedures; Section IV
shows the results and Section V presents the final discussion,
conclusions, and further work proposals.

II. THEORETICAL BACKGROUND
A. Principal component analysis

PCA is one of the best known technique in multivariate
analysis, tackling data compression and statistical pattern
recognition in a dataset. The idea is to extract features, making
a domain transformation of the input in a way that a reduced
number of features retaining most of the explanatory capacity
can be selected. The PCA algorithm is the optimum linear
transformation in the mean square error sense, resulting in a
set of linearly uncorrelated variables, the so called principal

978-1-4799-6644-8/14/$31.00 ©2014 |IEEE 24



IEEE HEALTHCOM 2014 - Workshop in E-health in Neuroscience

0.5

1
§>°~5TTTT k=3 GTTTHTTT o
2 o : =
[} ]
0% 5 10 15 20 % 5 10 15 2
Neuron # Neuron #
1 05
B 111 5 (1] Q
L oo o 2 l l l 5T T
0% 5 10 15 20 % 5 10 15
Neuron # Neuron #
(@) (b)

Fig. 1: Characteristic assembly firing patterns have similar weights
for assembly members and null weights for other neurons. Figure la
shows one example in which patterns can be successfully isolated and
Figure 1b one example in which they can’t. (Adapted from Lopes-dos
Santos et al. [13])

components (PCs), representing the directions that maximize
the rate of variance decrease [2].

Traditional PCA has limitations when dealing with high-
order dependencies, since it’s a linear method, is independent
of the data source, having no tunable parameters, and, when
applied to classification problems, assigns each new sample
strictly based on what was observed on the training period,
not updating statistical properties dynamically.

To overcome these limitations, several adaptations have
been proposed, e.g. the Dynamic PCA (DPCA)[24] or
the Recursive PCA [25], which deal with dynamic (non-
stationary) processes; the Multi-Scale PCA [26], that aims
to improve the performance when data have different time-
scales; and, finally, the Non-Linear PCA [27], Kernel-PCA
[28] which tackle non- linear relationships.

Specific to the NA detection problem, the PCs are calculated
from multiple time series, each corresponding to a single
neuron’s action potential occurrences. Each temporal series
is binned, resulting in a matrix (M,,,,.,,...x7), Where each
entry m,,; denotes the number of spikes of a given neuron
n in a given time bin ¢, NNeurons 1S the number of recorded
neurons and 7" the total number of time bins. This matrix is
then normalized by a z-score transformation. The PCs p; are
given by the set of eigenvectors P = [P1, ..., Pnnouronc) Of the
covariance of the resultant normalized matrix.

The PC weights, given by the elements wy, of a PC p, k =
1, ...nNeurons, may indicate the neurons composing each NA,
since a characteristic assembly firing pattern would have the
same weights for assembly members and null weights for other
neurons, as exemplified in Figure la.

However, some limitations exist when two assemblies share
neurons: in this case, the NA shared neurons firing patterns,
as captured by the covariance matrix, would result in PCs
with diverse weight patterns associated to those neurons who
constitute the assembly, thus impairing the NA membership
identification [12, 13]. See Figure 1b. In this work, we ex-
plored the extent of these limitations in inhibitory interactions
and in interactions with delays.
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III. METHODS

We analysed PCA performance when distinguishing be-
tween two NAs generated artificially by two biologically
plausible methods, described in Section III-A. Twenty four
single units were recorded from an awake behaving rat and
the mean firing rate and the covariance matrix were used to
tune our spike generation models and defined the statistical
properties of our artificial populations.

To obtain the data, 32 tungsten microwires were surgically
positioned within primary motor cortex (M1) of a Wistar
rat. The microwires were distributed in 4X8 arrays, spaced
500um in anteroposterior (AP) and mediolateral (ML) axis.
The following coordinate relative to bregma in millimeters
were used to center the arrays: +1.5 AP, +2.5 ML, 1.2 DV;
[DV=dorsoventral]). The study was approved by the Ethics
Committee from the University of Sdo Paulo Medical School
General Hospital number CAPPesq 0948/09.

Artificial assemblies were classified in three categories, as
proposed by Lopes-dos Santos et al. [13]: disjoint assemblies,
assemblies with at least one exclusive neuron, and assemblies
without exclusive neurons. To determine if a group of neurons
present correlated firing, thereby forming a NA, or if their
firing activity is independent from each other, we follow the
approach of Lopes-dos Santos et al. [12] and Peyrache et al.
[17]. Basically, it has been shown that the eigenvalues of
an autocorrelation matrix with statistically independent rows
follow the Marcenko-Pastur distribution, hence this analytical
distribution can be used as a statistical threshold to relate the
PCs with correlated firing activity (assemblies). For example,
if a given group of neurons form a NA, the associated PC
eigenvalue of their firing activity will be greater than the
threshold established by the Marcenko-Pastur distribution;
conversely, if the neurons are independent, the PC eigenvalue
will be located within this distribution.

A. Spike train generation

1) Method 1 - Spike train generation using a Poisson distri-
bution: In the first method, the neuronal firing was treated as a
homogeneous poissonian process, a highly employed method
due to the time-independent simplification [4, 29, 30].Each
simulated spike train was generated following a poissonian
distribution. The activity of neurons selected to compose each
assembly was modified by a altering the mean firing rate on
a given number of randomly selected bins. This variation was
positive when simulating excitatory interactions, and negative
for inhibitions. In a second round of simulation, relative de-
lays between the individual assembly members were defined,
characterizing not only synchronous, but also non-zero phase
differences.

2) Method 2 - Spike train generation using the cross-
correlation between neurons: In the second method, we anal-
ysed a more complex neuronal group firing pattern, employing
aricher temporal structure activity. Spike trains were simulated
by a latent multivariate Gaussian model, following the method
proposed by Macke et al. [23]. Such approach is important
since a model with correlations accounts for real data better
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than a model assuming independence [23]. The NAs were
specified by the cross-covariance between neurons where non-
zero values define the neurons belonging to each group. Thus,
a functional connectivity is established between distinct units
through the addition of statistical dependencies [5].

B. Experimental setup

The spiking activity extracted from the behaving rat data
resulted in a mean firing rate of 5.12 spikes/bin. Our artificial
spike trains had a length of 104 bins, each bin with 1ms.

As mentioned in Section III, we analysed three categories
of assemblies regarding their elements intersection. Thus,
from our simulated neuronal pool, some neurons were chosen
to participate in our artificial NAs A;, i=1,2, according to
the definition below. All other neurons remained with an
independent activity.

« Disjoint assemblies: A;={#1#2#3#4}; Ao={#5#64#7}.

« Assemblies with at least one exclusive neuron:

A ={#1 #2#3 #4H#5}; Ao={#4#5 H#6#7 #3}.

o Assemblies without exclusive neurons:

A 1={#1#2H#3 #44#5}; Ax={#3#4#5}.

For the spike trains generated according to the Poisson
distribution, we have evaluated the outcome for N=300 coin-
cident bins with a total of 20 neurons in our population. The
performance variation with sparseness will not be analysed in
this study.We analysed the performance change with respect
to the variation in the randomly selected bins firing rate,
gradually varying it (step 1%) from -95% up to 95% of the
baseline value. Then, we repeated the analysis, introducing a
one bin phase delay in the last neuron of each assembly.

For the spike trains using the cross-correlation model, our
population was reduced to 10 neurons. In order to make our
simulations more biologically plausible and avoid the use of
positive definite covariance matrices that can’t characterize
a multivariate binary distribution covariance matrix [23], we
extracted from real data 53 feasible values for positive and
negative correlations to define the interactions between cells.
Our goal was to determine how correlated a population must
be in order to be identified by PCA. For each assembly, all
elements covariance simultaneously assume the same value.

C. Assembly membership detection

As mentioned in Section II-A, the weights wj of each PC
may be an indicative of the associated neuron contribution to
the assembly.

We have selected a set of ‘“significant neurons” in our
population, by establishing a threshold according to Equation
1 below. A neuron k was considered as part of an assembly
if |wy| is greater than Thr, and not significant otherwise.

M Neurons

Thr = 2 [l

ey

n
h—1 Neurons

where n yeurons represent the total number of neurons in the
analysed population.
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The gain in Equation 1 was set based on several executions
of the experiment with a disjoint assembly modelled following
a poissonian process (Section III-A1), with a high increase of
mean firing rate in the selected bins, until the relationship
between false-positives and false-negatives was balanced.

D. Performance metrics

The definition of a metric for performance considered the
following membership characteristics: 1) number of detected
assemblies (Section III-D1) and 2) membership identification
(Section III-D2). We used a different performance metric with
respect to each characteristic to avoid misinterpretations. For
example, the algorithm can be excellent at detecting how many
assemblies exist, but lousy at detecting neurons which belong
to that assembly.

1) Performance metrics - Number of detected assemblies:
The performance metric for the number of detected assemblies
(Pr ,..) 1s given by:

P I—W, if 0<nda<2nra )
"As ) 0, otherwise
where:

e nda is the number of assemblies detected by the algo-
rithm, numerically equal to the number of eigenvalues
greater than the maximum bound of the Marcenko Pasteur
distribution [12].

e nra is the real number of assemblies pre-defined in the
simulated data used as input to the algorithm.

This metric assumes a linearly decaying performance with
respect to the number of incorrectly (miss)identified NAs. In
other words, we equalize the effect of false positives and false
negatives.

2) Performance metrics - Membership identification: A
method for quantifying similarity between the significant neu-
rons of each identified assembly and the pre-defined cells was
established: it’s performed by the creation of a so called “Sim-
ilarity Matrix”, (Sndaxnra), Using nda and nra as defined in
Section III-D1.

Each element s; ; of S is computed as:

nReal (i)’ Zf def(’L,J) >0

0, otherwise

dif f(i.j)
s(i, j) = {
3)

dif f(i,7) = Nequa(i,J) — Npigs (i, )
where:

e Nggual(i,j) is the number of neurons that belong both
to the established assembly ¢ and identified assembly j.

o Npisf(i,7)is the number of neurons that are not in agree-
ment between the established assembly ¢ and identified
assembly j (false positives).

e nReal(i)is the number of pre-defined neurons that com-
pose the established assembly .
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Analysing matrix S, we can determine which of the encoun-
tered groups are more similar to the pre-defined groups. Thus,
the performance for membership identification is calculated
as:

nda AL <S(Z, k) )
Pm m — =1 4
¢ ; nra @)

Such metric assumes that each false positive neuron will
penalize the index by cancelling the contribution of a correctly
identified neuron. Although Equation 4 apparently captures
the effect of the total number of assemblies, it lacks a
penalty for any false positive group of cells, and is, therefore,
complemented by Equation 2.

IV. RESULTS
A. Spike train generation using a Poisson distribution

The performance of the spike trains artificially generated
using the Poisson distribution can be seen in Figure 2. Each
column correspond to one of the defined membership cate-
gories (Section III). The first line corresponds to the number
of detected assemblies metric (Equation 2) and the second to
the membership identification metric (Equation 4). The case
with delays follows in Figure 3.

Notice in Figures 2 and 3 the delimitation of performance
“boundaries” and that all membership categories decreased
performance (for both metrics) with lower firing rate variations
in the selected bins. Also, there was a decay in performance
seen in the diagonals of Figures 2d, 3d, 2e and 3e, more
pronounced in the cases where assemblies shared neurons.

The scenarios portrayed in Figures 2f and 3f show that
the membership identification metric also form a triangular
“boundary” delimiting a slightly better performance region.

In Figure 3, we notice that the algorithm presented little
robustness to delays. As soon as the perturbation was inserted,
the corresponding neuron could no longer be detected.

B. Spike train generation using the cross correlation between
neurons

The performance of the artificially generated spike trains
with interactions defined based on the cross correlation be-
tween assembly members is presented in Figure 4.

Black dashed lines were inserted to explicit that our points
are not equally distributed, since they were measured from
real data. Thus, in order to establish general conclusions for
the results in Figure 4, we restricted our analyses to the parts
with more points (in the center), and excluded the borders.
Spike trains with specified correlation coefficients submitted
to our performance metrics reinforce the affirmation of Macke
et al. [23], that even seemingly small pairwise correlations
result in dramatic changes in the occurrence of firing patterns
across many neurons. That is especially verified for negative
correlation coefficients, when compared to poissonian models.
We notice that the algorithm identifies poorly the number of
NAs in those conditions, with a considerable amount of false
positive results (not shown), leading to a poor performance.
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V. DISCUSSION

Modern equipments with several built-in functions for signal
processing is a reality in neuroscience experiments. PCA is
already a widely used method for spike sorting and is gener-
ally an embedded algorithm but experimenters are generally
not concerned with its limitations. Because of its simplicity
and suitability for pattern identification, the algorithm is a
natural candidate for identifying NAs. This work contributed
to elucidate the appropriate conditions for PCA usage.

We have proposed two metrics to analyse PCA performance
for identifying NAs (Section III-D) and complemented previ-
ous studies considering other forms of interactions, inhibitory
and time-delayed patterns of interactions. We performed our
analysis using two types of plausible spike train generation
methods (Sections IT1I-A1 and III-A2). Following our approach,
an experimenter can analyse the statistics of the measured
spike trains and gain further insights as to decide whether or
not PCA is an appropriate algorithm. The choice of the two
metrics (Section III-D) was made to improve visualisation, but
one could combine them into a single equation, obtaining a
unique performance index.

Perturbations of similar magnitude applied to both NAs
produce less distinguishable PCs weights due to our fixed
membership threshold (Equation 1), which increase the num-
ber of false positives and false negatives. This may explain the
performance decay in the scenario portrayed in the diagonals
of Figure 2d and 3d (disjoint NAs), with more pronounced
effects depicted by Figures 2e and 3e (NAs with common
neurons).

The case where NAs have no exclusive neuron analysed
through the membership identification metric (Figures 2f and
3f) shows that in the limit all cells are identified but it’s not
possible to separate them into two distinct populations. The PC
weights of neurons in the assembly (wy) tend to increase in
magnitude the higher the variation of the firing rate, explaining
the triangular performance “boundaries” of those figures.

Our results (Figures 2 and 3) confirm the statement of
Lopes-dos Santos et al. [12], that a minimal activation firing
rate is required for the proper detection of the number of NAs.
We complemented this assertion by including inhibitory and
delayed interactions. The performance decay is explainable
since the feature extraction is less efficiently performed in
low variance conditions. Statistically significant results are
associated with an eigenvalue threshold (in this work, the
maximum bound of the MarCenko- Pastur distribution, but
one obtained from a percentile in surrogate methods can
also be employed). The eigenvalue indicates the amount of
variance in a given direction and, thus, there is always a
compromise between significance and sensibility, justifying
the poor performance in central regions of the aforementioned
figures. PCA has a poor output in such conditions and different
algorithms that are suited for identification of low variance
patterns are required.

Also, as expected, PCA has limitations in the sense of
extrapolating its analysis to delayed interactions. As soon
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Fig. 2: PCA performance when applied to artificially generated Poisson Spike Trains. The first and the second lines correspond to the
number of detected assemblies metric (Section III-C)and to the membership identification metric (Section III-D2), respectively. Each column
correspond to one of the defined membership categories (disjoints, at least with one exclusive neuron and without exclusive neurons). In
10* samples, 300 bins were randomly selected, in which the mean firing rate of the poissonian model was modified by a scaling factor.
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Fig. 3: PCA performance applied to the same assemblies indicated in Figure 2, but now with a one bin delay added to the last element of
each assembly. The first and the second lines correspond to the number of detected assemblies metric (Section III-C)and to the membership
identification metric (Section III-D2), respectively. Each column correspond to one of the defined membership categories (disjoints, at least
with one exclusive neuron and without exclusive neurons). We can note by analysing the membership identification metric (Section III-D2)
that the algorithm has little robustness to interactions with non-zero phase difference.
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for each axis (extracted from real data) and were inserted to highlight that the employed correlation values are not uniformly distributed.

as a delay is added, the corresponding neuron is no longer
identified, which can be verified by comparing Figure 2 with
Figure 3. Indeed, in real data, results are dependable on the
time bin definition and the experimenter can modify its value
to embrace delays. However, in huge populations, with great
amounts of data, such conditions are not always verifiable by a
person and one must be aware that the method has a limitation
in identifying more complex synaptic relations, such as the
ones established with Long-Term Synaptic Potentiation (LTP)
and Long-Term Synaptic Depression(LTD).

As mentioned in Section III-Al, the modelling of spike
trains as a Poisson process is widely used. However, such
simplification does not match all neural response variability.
By analysing the Fano factors, interspike interval distributions,
and coefficients of variation, the veracity of such assumption
can be verified. Here we complement the analysis by present-
ing responses to artificial spikes containing a richer temporal
structure, using the method proposed by Macke et al. [23]. In
future works, we propose analyses of other sorts of spike train
models, e.g. the Poisson model with refractoriness; Krumin
and Shoham [31]; Oweiss [32].

Contrasting to poissonian spike trains (Figures 2c and
3c), Figure 4c, employing a richer temporal structure, shows
regions where assemblies without exclusive neurons can be
correctly identified. Such observations highlight that the ne-
glect of complex interactions between neurons can lead to
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false conclusions for real data and reinforce the need of more
realistic simulations to test signal processing methods.
Finally, we notice that a poor performance in the identifica-
tion of number of NAs does not automatically imply a similar
result in membership. That is an important remark because,
depending on the application, a penalized performance in this
metric is acceptable, especially with the development of new
techniques that increase simultaneous recording of neurons.
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