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Abstract—Can reliable telecardiology be achieved at low
bandwidth cost? In response, we propose a detector at the user
end so that only beats found to be anomalous are transmitted
to a diagnostic center, where all received beats are correctly
(re)classified. In this framework, high reliability is achieved by
detectors with high sensitivity. Having laid the design frame-
work, we then realize desired high-sensitivity detection using a
dictionary learning approach. Specifically, using patient records
from the MIT-BIH arrhythmia database, we detect ventricular
ectopic beats (VEBs), which are known to be precursors to various
serious arrhythmic conditions in the heart. In particular, we
achieve a reliability of one undetected VEB in one thousand while
saving 78.2% bandwidth using dictionaries with 240 atoms. With
larger dictionaries with 420 atoms, we achieve an even higher
bandwidth savings of 79.2% while allowing no (less than one
in 1766) undetected VEB. Finally, we compare our results with
performances a large set of reported heartbeat classifiers, and
demonstrate the suitability of our approach in the context of
telecardiology.

Keywords—ECG, Ventricular Beats,
Sensitivity Detection, Dictionary Learning.
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I[. INTRODUCTION

Electrocardiogram (ECG) is an indispensable aid in di-
agnosing, monitoring and managing cardiovascular diseases,
which account for 30% of the global death [1]. In certain
scenarios, including high-risk-patient care, ECG from a subject
is continuously monitored to detect any deviation from normal
sinus rhythm. Additional complexities arise when the subject
requires remote monitoring [2]. Consider a telecardiology
architecture, depicted in Fig. la, where ECGs of remote
users are transmitted over bandwidth constrained links to a
diagnostic center equipped to accurately detect anomalous
beats. Traditionally, the entire signal would be transmitted,
resulting in perfect reliability, albeit with the attendant high
bandwidth requirement. In this context, with a view to realizing
a low-cost system, one would ask: Can reliable telecardiology,
in terms of accuracy of anomalous beat detection, be achieved
with significantly lower bandwidth?

In response, we propose automated heartbeat classification
at the user device (see Fig. 1b), and transmission of only
those beats that are detected as abnormal. Indeed, assuming
an (unrealizable) ideal classifier with both sensitivity and
specificity unity, one would achieve perfect reliability with
only « fraction of the original bandwidth, where a denotes
the prevalence rate of anomalous beats. In practice, we shall
achieve a high reliability target using suitable high-sensitivity
classifiers. Not surprisingly, bandwidth requirement increases
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Fig. 1: (a) Telecardiology architecture under consideration; (b)
Block diagram of anomalous heartbeat detector.

with decreasing specificity subject to sensitivity constraint.
Thus, the usual sensitivity-versus-specificity trade off in the
underlying classifier maps to the reliability-versus-bandwidth
trade off in the telecardiology system, albeit nonlinearly. In
this paper, we propose a natural design framework for telecar-
diology system design based on the latter trade off, and make
explicit and illustrate the aforementioned nonlinear mapping,
while indicating the target high reliability (equivalently, high
sensitivity) region.

Having laid down the design framework, we demonstrate
high-sensitivity detection with acceptable specificity using
class-specific dictionaries, and hence reliable low-cost telecar-
diology. In this paper, we shall consider anomaly resulting
from only ventricular ectopic beats (VEB) for the sake of
simplicity. Although such beats do occur occasionally even
in healthy individuals, those could indicate onset of serious
conditions, especially, in vulnerable individuals [3]. Specif-
ically, we train individual dictionaries for normal beats and
VEBs, respectively, based on well established interval and
morphological features. Given a test heartbeat, such features
are represented using both the dictionaries, and we assign to it
that class, whose dictionary provides sparser representation.
Our main idea here is that a VEB should finds a better
representation in the VEB dictionary, rather than in the normal
beat dictionary, and vice versa. Using the proposed classi-
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Fig. 2: ECG record containing normal and ventricular beats.
Beats annotated “N” indicate normal, and “V” indicate VEBs.

fication rule, desired high-sensitivity detection was achieved
for appropriate dictionary sizes. Specifically, we demonstrate
the effectiveness of the proposed scheme using the MIT/BIH
arrhythmia database. Each heartbeat gives rise to signal vector
of approximate size one thousand, from which we extract 66
features for training respective dictionaries. In this framework,
using a dictionary size 240, we demonstrate 78.2% savings
in bandwidth, while allowing one undetected VEB in one
thousand. Further, larger dictionaries of size 420 achieve
79.2% bandwidth savings while allowing no undetected VEB
beats (more accurately, less than one in 1766). Finally, we
illustrate the relative suitability of the proposed high-sensitivity
classifier vis-a-vis previously reported algorithms.

The rest of the paper is organized as follows. Motivation
and main contributions are described in Sec. II in appropriate
medical and engineering contexts. Sec. III formally states
the problem, while the proposed dictionary-based solution is
provided in Sec. IV. Experiments and results are reported in
Sec. V. Finally, Sec. VI concludes the paper with a discussion.

II. MOTIVATION AND CONTRIBUTION IN CONTEXT

At this point, we provide detailed motivation by placing
our contribution in medical and engineering contexts.

A. Clinical Motivation

A heterogeneous set of serious conditions, symptomatized
by abnormal electrical activity in the heart, are categorized
as cardiac arrhythmia [3]. Arrhythmias originating in the
atria include atrial fibrillation, atrial flutter, and supraventric-
ular tachycardia, whereas those originating in the ventricles
include ventricular fibrillation, ventricular tachycardia, and
ventricular flutter. While a normal heartbeat is triggered by
the sinoatrial node, certain abnormal ventricular conditions
trigger a premature ventricular contraction (PVC) beat ahead
of the usual sinoatrial trigger. Such PVC beats could be either
benign, or a precursor of aforementioned serious arrhythmic
conditions, especially in subjects with compromised heart.
Abnormal beats also occur when the usual sinoatrial trigger
does not materialize, and the contraction is instead initiated
by ventricular pacemaker cells as a backup. Such a ventricular
escape beat also either occurs in a healthy individual (skipped
beats), or could be a harbinger of serious arrhythmic conditions
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Feature Description

e Number of samples between cur-
rent R_peak location and Previous
R_peak location

e Number of samples between cur-
rent R_peak and the next R_peak
e QRS_offset-QRS_onset

e R_peak-Q_peak

e S_peak-R_peak

e Magnitude of Q_peak
e Magnitude of R_peak
e Magnitude of S_peak
e P offset-P_onset

e Magnitude of P_peak
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Heartbeat
interval
features

P_peak-P_onset
P_offset-P_peak
T_offset-T_onset
Magnitude of T_peak
T_peak-T_onset
T_offset-T_peak
30 uniformly sampled data
points within 60ms window with
R_peak as center
e 20 uniformly sampled data
points within 80ms window with
T_peak as center

Morphological
features

TABLE I: Feature vector has length 66, comprising of 16
heartbeat interval features, and 50 morphological features.

in cardiac patients. Additionally, since the morphologies of
both PVC and ventricular escape beats are approximately
the same, the Association for the Advancement of Medical
Instrumentation (AAMI EC57:1998) standard describes both
as ventricular ectopic beats (VEBs) [4]. In this backdrop, we
propose to detect VEBs, and use those as markers to potentially
initiate medical intervention.

B. Motivation for High Sensitivity Classifiers

Consider a telecardiology system depicted in Fig. 1a, where
each user is equipped with a heartbeat classifier as shown
in Fig. 1b, so that only beats detected as anomalous are
transmitted. As mentioned earlier, we shall consider VEBs as
the only anomaly. Further, denote by Se and Sp, respectively,
the sensitivity and the specificity of the classifier. We also
assume that the diagnostic center has the resources to validate
and correct, if necessary, the class of each beat it receives.
Thus one fails to detect a VEB only if that beat is originally
classified as normal and never transmitted. Thus the fraction
of undetected VEBs, 1 — Se, measures the reliability of the
system. The lower the above fraction, the more reliable is the
system, and perfect reliability is achieved when such fraction
equals zero. Correspondingly, the fraction B of bandwidth
usage is give by

B=Sexa+(1-5p)(l—a), (1)

where « is the prevalence rate of VEBs, and the bandwidth
requirement without any classifier is taken as the reference. Of
course, no classification is equivalent to Se = 1 and Sp = 0,
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Fig. 3: Morphologocal features: (left) normal beat; (right) VEB.

where, although perfect reliability is achieved (1 — Se = 0),
one does not save bandwidth (B = 1). On the other hand,
perfect reliability would be achieved by an ideal classifier
(Se = 1, Sp = 1) with required bandwidth fraction equal to
Se x «, amounting to substantial savings. Unfortunately, such
an ideal classifier is not realizable. In practice, we seek to save
bandwidth while still achieving high reliability (e.g., no more
than two undetected VEBs in one thousand, i.e., Se > 99.8%).

C. Proposed Solution vis-a-vis Engineering Choices

In classifying each heartbeat into two classes, normal and
VEB, various engineering choices arise. For instance, classi-
fication algorithms have been reported based on characteristic
points of ECG signals (P, Q, R, S, and T) [5], [6], as well
as fractal dimension and Hurst exponent [7], [8]. However, we
seek to design classifiers using labeled historic data, and hence
limit to only machine learning techniques. In this regard, linear
discriminant analysis and neural network have been employed
[9], [10]. Further, unsupervised methods of dimensionality
reduction have been used in conjunction with compressively
sampled ECG data, whence anomaly detection has been suc-
cessfully demonstrated [11], [12]. In this backdrop, keeping
practical implementation in view, we additionally desire a
method where classification performance can seamlessly be
traded off against compute requirement. Accordingly, in this
paper we adopt dictionary learning so that the above trade off
could be achieved by varying the dictionary size.

The proposed dictionary learning solution enjoys intimate
theoretical connection with sparse coding, where a signal
is expressed as a linear combination of relatively few basis
vectors (equivalently, atoms of a dictionary) [13]. Indeed, we
propose sparse coding, using dictionaries learnt using the K-
SVD (singular value decomposition) algorithm [14]. Of course,
other dictionary learning techniques, such as the method of
optimal directions (MOD), also exist alongside K-SVD, and
find applications in areas including image restoration, denois-
ing and texture classification [15]. Specific techniques apart,
effectiveness of dictionary learning has in general not been
demonstrated for classification of ECG beats. The present
paper fills this gap by demonstrating dictionary-based high-
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sensitivity classification and its effectiveness in the context of
high-reliability telecardiology.

III. PROBLEM STATEMENT

We begin by mathematically formulating the problem of
classifying an ECG beat into the normal and VEB categories.
Denote by x any signal vector representing an ECG beat.
A candidate classifier specifies two mutually exclusive and
exhaustive subsets I'y and I's of set I' of all possible x such
that if a beat x € I'q, it is declared normal, else if x € I's,
it is declared a VEB. We wish to find I'; (and hence I'y)
such that the sensitivity, i.e., fraction of VEB beats detected
as VEB beats, is high (say, above 99.9%). Subject to this,
we desire to maximize specificity, i.e., fraction of normal
beats declared as normal beats. Recall that the sensitivity (Se)
determines the reliability (= 1 — Se), whereas both sensitivity
and specificity determine the bandwidth requirement according
to (1). Generally, two approaches are taken towards designing
such classifier: based on (i) stochastic model under each
hypothesis (normal and VEB), and (ii) historic data making
use of appropriate learning method. As mentioned earlier, we
adopt the latter in view of abundant labeled data, and propose
a dictionary based solution.

IV. PROPOSED DICTIONARY BASED CLASSIFIER

To proceed, we need the mathematical notions of compres-
sive sensing and dictionary learning.

A. Mathematical preliminaries

1) Compressive Sampling: Compressive sampling (CS)
aims at recovering high dimensional sparse vector z € R"
from a few of its measurements y == &z € R™ with m < n,
where ¢ denotes the measurement matrix [13]. Formally, we
seek to solve

min ||z]o subject to Px =y, )
x

where || - ||o indicates the Iy (counting) norm. In general, (2)
is intractable. Fortunately, under certain technical conditions,
solution to (2) remains unaltered if || - ||o is replaced by the
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Iy norm || - |1, where new problem requires more tractable I,
solvers. Among the existing /; solvers, orthogonal matching
pursuit (OMP), a simple and effective (although greedy) algo-
rithm, will be used in our paper [13]. The aforementioned
technical condition relates to the sufficiency of the set of
measurements as a function of signal sparsity, which is often
empirically estimated through repeated experimentation.

CS theory also applies to signal recovery from noisy
(inaccurate) measurements

y=dx+e |e|l2<e,

for some € > 0. Specifically, we seek recovered signal
Z=argmin, ||y — Pz |2 +7 || = |1, 3)

for appropriate 7 under certain technical conditions. The
optimization problem (3) is often solved by iterative soft-
thresholding method [13].

2) Dictionary Learning: The method of dictionary learn-
ing identifies a tunable selection of basis vectors providing
sparse representation. Given a set of signals {z;}?,, K-
SVD [14] obtains the dictionary D that provides the sparsest
representation for each example in this set. It involves a two-
step procedure. In the first step, for a given dictionary D, we
obtain matrix ¥ with sparse columns by solving the following
optimization problem:

U = arg ming Z || ©; |l subjectto X = DO, (4)
7

where ©; is the I*" column of ©, and X is the matrix whose
columns are x;’s. Using the above ¥, the pair (D, ¥) is then
updated as

(D, ) = argmin | X — DU||% subject to ||¥; ]l < ToVi,

)
where U; denotes the ¥ column of W, T, the sparsity
parameter, and || - || indicates the Frobenius norm. In view

of CS theory, thus the K-SVD algorithm alternates between
sparse coding (4), solved using an [! solver such as OMP, and
dictionary update (5), solved using iterative soft-thresholding,
till there is a convergence in the dictionary so learnt.

B. Proposed Solution

Armed with the preceding mathematical background, we
now propose a dictionary based heartbeat classification method
that exploit labeled historic data. Denote such labeled dataset
by {{za}*,}/X,. Here | indicates the class label: | = 1
indicates normal, and | = 2 indicates VEB, with number K of
classes equaling two at present. Further, ¢ indicates the signal
index and takes values up to N, the number of beats present
in class /. Now, as detailed above, we learn the dictionary D;
for class [ from {yi,l}f\il for both [ = 1 (normal) and | = 2
(VEB). All such dictionary learning is performed offline.

In real time, when a heartbeat vector x is presented, the
proposed classifier assigns the class label, the dictionary cor-
responding which provides the sparsest representation. Specif-
ically, we set an accuracy level € > 0, and find the sparsest
representation ¢&; of x using each dictionary D; (I =1, ..., K)
by solving

&y = argmin ||oy||; subject to ||z — Dyay |z < €.
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Fig. 4: Sensitivity and Specificity of classifier for different
dictionary sizes

Actual Actual
Labled \Y N Labled \Y N
\% 1764 2 \% 1766 0
N 215 | 1551 N 194 | 1572

(a) Dictionary size 240 (b) Dictionary size 420

TABLE II: Confusion matrix for proposed classifiers. Here V
indicate VEB and N indicates Normal classes.

Finally, we assign to z the class label
[ = arg min llaulos (6)

i.e., the index of the sparsest representation. If (6) results in
a tie between two indices i and j, we pick i such that ||z —
D;é;ll2 < ||l& — Djéjl|2. If dictionary size is small, it may
not be possible to obtain e-accurate representation using any
rival dictionary. In that case, we shall only make use of the tie-
breaking mechanism. Finally, notice that one may use smaller
dictionaries, potentially incurring classification accuracy loss,
in order to reduce compute requirement within the proposed
framework. Although our solution applies to any number K
of classes, in this paper we confine to K = 2.

V. EXPERIMENTS AND RESULTS

We use MIT-BIH Arrhythmia Database available in the
PhysioBank archives' [16], consisting of 30-minute excerpts
of two channel ambulatory ECG recordings digitized at 360
samples per second per channel with 11-bit resolution over
a 10 mV range. Each beat in the database is annotated by
two or more cardiologists independently. Prior to classification,
we remove baseline wander using median filters of window
size 200ms and 600ms. Such filters remove P-waves, QRS
complexes and T-waves leaving behind the baseline wander
[9]. We then subtract the baseline wander from the original
signal.

A. Proposed Features

Towards desired classification, we first generate two sets of
features: (i) heartbeat interval features, and (ii) morphological
features [9]. As a first step we used the following heuristic

! Available at http://physionet.org/physiobank/database/mitdb
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Sensitivity | Specificity

(%) (%)
Chow et al? [19] 97.4 99.2
Hu et al’ [20] 78.9 96.8
Christov et al. [21] 96.9 96.7

G Bortolan et al. [22]
Neural networks (NN) 95.8 98.3
K-th nearest neighbour (kNN) 91.3 98.7
Discriminant analysis (DA) 97.0 94.4
Fuzzy logic (FL) 92.8 98.4
Chazal et al! [9] 71.5 98.9
Goémez-Herrero et al. [23] 98.5 97.2
Inan et al? [24] 85.3 99.1
Jiang et al [25] 94.3 99.4
Ince et al® [26] 93.4 99.2

Proposed method

Dictionary size 240 99.9 87.8
Dictionary size 420 100 89

! Classifiers proposed for multi class classification.
2 Specificity calculated by assuming prevalence as 11%.

TABLE III: Comparison of the proposed method with rival
methods in terms of classification performance.

segmentation. Consider an R_peak located at time ¢(, and sup-
pose the durations of the pre-RR and the post-RR intervals are
Tpre and Tpos¢. Then the interval [tg —0.5T ¢, to+0.75T p0st)
provides the estimated beat segment corresponding to an
R_peak located at {y. Here we made use of the locations of

the R_peaks given in the Physionet database annotations.

Next we obtain fiducial points of heartbeat such as, onset
and offset of QRS complex, P_wave, and T_wave, position
and magnitude of P_peak, Q_peak R_peak S_peak and T_peak
using a fiducial point identifier algorithm [17]. In order to
improve accuracy, we resampled our signals at 1024 Hz. From
these points, we compute a set of heartbeat interval features
given in Table I. We also compute morphological feature
vectors consisting of 30 uniformly spaced samples within a
window of 60ms with R_peak as center, 20 uniformly spaced
samples within a window of 80ms with T_peak as center. Such
morphological features within normal and ventricular ectopic
beats are depicted in Figure 3.

B. Learning Class-specific Dictionaries

The experiment is performed using ECG signals pertaining
to 11 patient records in MIT-BIH Arrhythmia database. Each
patient data is divided into training and test sets. For any given
patient, the number of normal beats are significantly higher
compared to that of VEB beats. For training, we choose the
same number of normal beats as that of VEB beats for each
subject. Further, we learn dictionaries for both the ECG beat
classes under consideration on the basis of training data using
K-SVD algorithm as described earlier. Next each test beat is
projected onto both dictionaries and the beat is assigned to
the class whose dictionary provides the sparser representation.
The dictionaries of both normal and ventricular beats are
trained using 1755 beats and the classification performance
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Fig. 5: Comparison of various classifiers in the context of
telecardiology.

is evaluated on 1766 beats from the same set of patients.

C. Classification Performance

Fig. 4 depicts the performance of the proposed classifier
in terms of sensitivity and specificity for various sizes of
dictionaries. Note that our method achieves high sensitivity for
a range of dictionary sizes. To highlight this, we draw a dashed
line indicating a sensitivity of 99.8%, and observe multiple
points above that line in the sensitivity plot. As expected [13],
the specificity is acceptable when the dictionary size is about
three times the feature vector length or more. For a dictionary
size of 66x240, sensitivity and specificity of 99.9% and 87.8%,
respectively, are achieved, and the corresponding confusion
matrix is presented in Table Ila. For a larger dictionary size
of 66x420, we achieve sensitivity and specificity of 100% and
89%, respectively and the corresponding confusion matrix is
presented in Table IIb. Note the improvement in the classifier
performance is achieved at the cost of higher compute require-
ment.

Table III compares the classification performance of our
method with various reported algorithms in terms of sensitivity
and specificity. While our technique achieves higher sensitivity
than rival algorithms, the latter in general achieve higher speci-
ficity, making a fair comparison difficult. Yet, devoid of context
(such as telecardiology), one sometimes wishes to keep both
sensitivity and specificity roughly equal, while maximizing that
equal quantity. According to such criterion, certain reported
classifiers, especially, due to [19], [21], [22], [23], [25] and
[26], do appear attractive. Unfortunately, an application such
as telecardiology does not lead to the aforementioned criterion.

To highlight the importance of telecardiology context, in
Fig. 5 we make comparison between the same classifiers
as earlier, but now with respect to the number of VEBs
undetected per one thousand beats vis-a-vis the fraction of
original bandwidth used. Here we assume an 11% prevalence
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rate of VEBsZ. As mentioned earlier, we use as reference
the bandwidth requirement when no classifier is deployed.
On the other hand, an ideal classifier would use only 11%
of the reference bandwidth (shown by vertical dashed line).
In this backdrop, notice that a number of reported classifiers
do operate close to, or even less than, such ideal bandwidth.
However, those do not perform close to our reliability limit of
two undetected VEBs in one thousand (shown by horizontal
dashed line). The nearest in this respect, the classifier proposed
by Goémez-Herrero et al. [23], requires only 13% of the
reference bandwidth, but fails to detect about 15 VEBs in
1000, which is 7.5 fold higher than the acceptable limit.
In comparison, the proposed classifier with dictionary size
66x240 would use 21.8% of bandwidth, while missing only 1
anomalous beat per 1000. A larger dictionary size of 66x420
leads to only 20.8% of bandwidth with no (less than one in
1766) VEB misclassification.

VI. DISCUSSION

In this paper, we consider VEB versus normal heartbeat
classification in the context of bandwidth constrained tele-
cardiology. Specifically, we desire a high reliability of two
undetected beats in one thousand or less (i.e., sensitivity greater
than 99.8%). Subject to such reliability constraint, we sought
to minimize the bandwidth usage. In this backdrop, we demon-
strated such high-sensitivity classification (99.9% and 100%)
using dictionary learning techniques, while achieving substan-
tial bandwidth savings (78.2% and 79.2%, respectively). Addi-
tionally, proposed classifiers are scalable in terms of compute
requirement (dictionary sizes of 240 and 420, respectively),
and hence assume practical significance. In theory, one may
achieve high classification accuracy as well as high class-
specific compression and hence low transmission bandwidth,
by simply enlarging the feature vector to include the entire
signal vector. However, the prohibitive compute requirement
for both offline training of a large dictionary, and real-time
signal representation as a linear combination of large number
of dictionary atoms could make such schemes impractical. In
summary, the trade off is not merely between reliability and
bandwidth, but involves the compute requirement as well.
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