
Are the Current Architectural Practices Suitable for Safety Aspects of
Medical Devices? An Exploratory Investigation.

Fabio Leite ∗, Pablo Oliveira Antonino †, Paulo Barbosa ∗, Soeren Kemmann † and Raphael Mendonca ∗
∗ State University of Paraiba, Campina Grande, Brazil

Email: {fabio, paulo}@cct.uepb.edu.br, raphael.mendonca@nutes.uepb.edu.br,
† Fraunhofer IESE, Kaiserslautern, Germany

Email: {pablo.antonino and soeren.kemmann}@iese.fraunhofer.de

Abstract. We have investigated approaches in the literature to
assess the quality of the software architectures of medical devices,
and have found evidence that there is a lack of methodologies for
evaluating the software architecture design aspects of medical devices
that might affect system safety. Such evidences were identified when
evaluating the software architecture of the FDA Generic Infusion
Pump searching for architectural evaluation approaches available
in the literature. In order to fill this gap, we propose a set of
quality questions that focus on analyzing software architecture design
aspects of medical devices aiming safety. We show arguments on why
reference projects such as the FDA Generic Infusion Pump system
must satisfy our new quality questions. The quality questions were
integrated into a quality model commissioned by the Brazilian Health
Ministery for the certification of medical devices.

I. INTRODUCTION

Nowadays medical devices have an increasing number of
software-intensive features. The incorporation of embedded
processors into these devices allows benefiting from advan-
tages such as size reduction, more control, less physical
interaction, and tolerance to hostile environments, among
others [1]. Naturally, the more software is embedded into these
devices, the more design control is necessary across different
software engineering disciplines. Quality attributes (QA) of
software system architectures can be defined in many ways
according to [2], and a set of non-functional requirements has
been proposed to assess product quality. In this sense, one
important issue to mention is that the design in the medical
devices industry is very strongly affected by regulations [3].
The regulation states that the most relevant quality attribute
to be considered is safety, due to the nature of laws, accident
prevention, and so on. Therefore, due to our experience with
regulations [4], the main QA to be considered when assessing
architectures of medical devices is safety.

Recently, the Brazilian Health Ministry has started some
initiatives and is investing resources into improvements of the
quality of medical devices. One of these initiatives concerns
the definition of a new quality model for assessing software-
intensive systems [5] by evaluating the safety arguments for all
the control features. This quality model is being developed by
the Fraunhofer IESE in collaboration with the NUTES project,
which is one of the main actions by the Brazilian government
to generate know-how on how to assess and develop medical
devices with the requested quality by surveying its usage in
Brazil. NUTES stands for Nucleus for Strategic Health Tech-
nologies, and it is physically located at the State University of
Paraba.

The quality model is being developed focused on the safety
aspects of embedded software in electromedical devices, once

the very few models already established in standards and in the
literature are not focused in safety as the main quality attribute,
what, consequently, imposes difficulties in achieving the actual
interests in quality assurance. Our quality model includes
questions for analyzing the following engineering disciplines:
requirements, architecture, testing, code, and usability. Among
these, in this paper we focus on the portion of the quality
model that deals with evaluation of software architecture
aiming safety.

We have observed that the set of relevant questions defined
in the quality model for safety assessment of software archi-
tectures of medical devices provides a good basis for arguing
with software architects and other professionals involved in
the development of medical devices about the importance of
architecting the software considering safety as a key quality
attribute.

This paper is structured as follows: In Section II a review
of the literature is provided to support our argument that we
still need to care about safety when assessing systems and
software architectures. Section III analyzes and criticizes a
set of reusable questions identifying specific gaps if such
questions were employed for regulatory purposes. Section IV
introduces and justify new questions for safety assessment.
Section V discusses other works that have safety as a concern
for evaluating systems and software architectures. Finally,
Section VI presents our final impressions about the work and
how it continues being improved.

II. INVESTIGATING SAFETY CONCERNS IN
ARCHITECTURAL ASSESSMENT APPROACHES

ISO 42010 [6] defines architecture as fundamental concepts
or properties of a system in its environment embodied in its
elements, relationships, and in the principles of its design and
evolution. In this regard, it is possible claim that architecture is
a key artifact, considering medical device as software-intensive
system.

Actually, the architectural decisions are directly related to
the quality attributes exposed by the system [7]. Therefore, it
is mandatory to evaluate the architectural decisions to check
their impact (positive or negative) the safety of a medical
device. However, there is a lack of evaluation methodologies
concerning to safety, although several previous works related
to architecture evaluation can be found in the literature [8].

Even well known methods such as the ones from the Soft-
ware Engineering Institute: Software Architecture Analysis
Method (SAAM) [9], Architecture Tradeoff Analysis Method
(ATAN) [10] and Active Reviews for Intermediate Design

2014 IEEE 16th International Conference on e-Health Networking, Applications and Services (Healthcom)

978-1-4799-6644-8/14/$31.00 ©2014 IEEE 425

(ARID) [11]. SAAM consists of evaluating the architecture
according to scenarios that were prioritized, weighed and
scrutinized with the stakeholders. The main tangible outputs
of the SAAM are: scenario coverage in the architecture, a
concrete idea of the critical portions in the architecture that
have potential complexity, and potential points of possible
changes.

ATAN is an early evaluation method that intends to evaluate
how well an architecture satisfies particular quality goals and
how they impact each other. The main idea is to identify
problems at early stages of the development process in order
to minimize the efforts to solve them. Furthermore, ATAM
aims at identifying and documenting all possible architectural
approaches in order to select the best one according to a quality
attribute utility tree generated by the scenarios elicitation and
prioritization.

Finally, ARID is an approach that is suitable for evaluat-
ing an incomplete architecture or a partial design. This is
a lightweight evaluation approach that concentrates on the
suitability of the new architecture according to scenarios and
some questions that can help the reviewer to conduct the
evaluation. This technique can be combined with ATAN to
improve some aspects in the overall evaluation; for example,
ATAN can put together more concrete and necessary artifacts
to be analyzed in early phase of the ARID evaluation.

Despite a significant number of works related to architecture
evaluation, there is a lack of works on specific evaluations
concerning safety. We can find works on using the ATAN
method in safety-critical systems (e.g. avionics domain) [12]
but they are way much tight to constraints of the domain,
and hardly extend to the context of medical devices, which,
in a sense, demands special considerations that particular of
the medical domain. Moreover, Rozanski and Woods [13]
published in their book a set of questions concerning to
high quality software architecture for each architecture view.
However, the questions are too narrow for evaluating safety
aspects (this experiment will be detailed in the next section).

Indeed, there are several design aspects related to safety
that have to be considered when performing an evaluation.
However, most of architecture evaluation methods available in
the literature do not properly consider aspects related to safety
engineering in the development of medical devices.

III. EVALUATING EXISTING LITERATURE QUESTIONS

In this section, we take a set of qualified questions from
the literature and evaluate its feasibility for assessing systems
and software architectures in a regulatory context. From our
understanding, we consider the work of Rozanski and Woods
[13] as a mature model for addressing such assessments, as it
has been has been widely accepted and adopted as basis for
documenting architectures of software based systems.

In order to analyze whether their approach was appropriate
to the context of medical devices, we tried to apply their
quality questions to the Generic Infusion Pump project [14]
and obtained results that might be considered acceptable
by the software engineering community. Other might claim
that minor adjustments in the questions would be enough
to provide a good support to meet our goal. In this section
we provide evidences to claim that this assumption is not an
appropriate choice.

We analyzed 94 questions and only 22 questions (less than
20%) were considered suitable for our purpose. One important
justification is that most questions do not address quality
attributes, especially safety.

Some examples of the questions that are not appropriate for
evaluating architectures focusing on safety are shown below:

1) Can you simplify your concurrency design?
2) Have you considered how the architecture is likely to

cope with possible change scenarios in the future?
3) Have you defined a clear strategy for organizing the

source code modules in your system?
The concurrency aspect addressed by Question 1 is an

important item to be considered when evaluating the safety
criticality of a medical device, since, if not properly managed,
errors like race conditions and permanent interruption of a
process can be root causes of safety-critical failures. However,
what matters for safety is the existence of mechanisms for
detecting and handling such situations. The optimization of
the concurrency model is important as a further design im-
provement step in order to improve other quality attributes
like maintainability and performance. For safety, the main
argument would be information about mechanisms to cope
with concurrency failures, independently of how optimized the
concurrency model is.

The core aspect evaluated by Question 2 is if the system
is designed to evolve or be maintainable. Maintainability is
a core aspect that architects and designers should take into
account. However, the level of modularity will not determine
whether the system is safe or not. The system can be absolutely
hard to maintain, but still cover every safety requirement
specified. In a nutshell, the level of modularity does not
determine how safe the system is. Therefore, this item is also
not appropriate to evaluate safety of medical devices.

Question 3 is about verifying the existence of a clear hierar-
chical decomposition and organization of modules and source
code. This aspect is fundamental when quality attributes such
as understandability, modularity, and maintainability are being
analyzed. With respect to safety, they are not relevant, since
the system being analyzed can be extremely modularized, and
hierarchically decomposed, and might even not address the
necessary safety measures.

Some examples of the questions that are appropriate for
evaluating architectures focusing on safety are shown below:

1) Will a clear set of standard third-party software elements
be used across all element implementations? Have you
defined the way they should be used?

2) Are the assessors satisfied that the deployment environ-
ment meets their requirements in terms of standards,
risks, and costs?

3) Do all element interactions take place via well-defined
interfaces and connectors that link the interfaces?

Question 1 deals with the very common practice of reusing
parts of one system for building a new one. This reuse may be
from legacy systems of the same company, or from systems
built by other companies (so called third party systems). In
any case, when any of these elements are reused, there should
be evidence that they are appropriate for the new context. Such
evidence generally includes failure mode and effect analysis,
test plan, and any other mechanism that shows that this system
is appropriate for the new context.

2014 IEEE 16th International Conference on e-Health Networking, Applications and Services (Healthcom)

426

Question 2 is about deployment strategies considered in
the implementation of medical devices. This aspect is of
fundamental importance for safety since the computational
nodes should be in conformance with the integrity levels
specified in the standards. When this aspect is not observed,
the safety of the medical device is strongly compromised.

The aspect discussed in Question 3 is also important for
safety because it provides the basis for analyzing error prop-
agation. Having a clear understanding of the interface and
the connectors allows safety engineers to precisely identify
which architectural elements must be considered while con-
ducting failure identification techniques such as Fault Tree
Analysis, and Failure Mode and Effect Analysis. Therefore,
when properly described, beyond improving safety analysis
efficacy, interfaces and connectors descriptions also improve
the efficiency of safety analysis.

Finally, there are some questions that we were not able to
classify as either useful or useless for safety. In order to show
our point, let us take the following question and show our
arguments.

1) Have you identified any standard approaches to design
that you need all element designers and implementers to
follow? If so, do your software developers accept and
understand these approaches?

At first, there is evidences that this question would have
some impact on system safety due to its appeal to be dis-
ciplined in the standardization of good practices in order to
achieve some quality goal. Moreover, only with the accep-
tance and understanding of the development team it would
be feasible to get a reliable implementation in terms of
safety quality. For example, only with the right understanding
of the importance of redundancy channel, a compromised
implementation of such safety feature could be expected.
Thus, our claim is that to be in conformance with design
and implementation guidelines is a strongly recommended
practice in development environments. That is why it is also
important to ensure that members of the development team are
committed to these rules. However, unfortunately, this subject
does not offer a basis for determining or inferring anything
about safety integrity levels of a medical device. It would be
useful for improvements in structure, understandability, and,
consequently, maintainability of the system. However, it is not
a determinant factor whose absence would compromise the
safety of the medical device.

IV. ARCHITECTURE QUALITY MODEL FOR MEDICAL
DEVICE EVALUATION ADDRESSING SAFETY

One of the goals of considering software systems at the
architecture level is to ensure that the concerns of the different
stakeholders involved in the development process are ad-
dressed and documented [15], and also that different aspects of
the system (e.g. system structural decomposition and behavior)
were considered [13]. To ensure that all the relevant safety
aspects are considered, a requirements model for safety-related
product artifacts was previously created [5]. The concrete
quality demands for general engineering artifacts proposed in
this work is used as basis for the architecture quality model
proposed in this paper. This general quality model aims at eval-
uating medical device on four abstraction levels: (i) context
level, (ii) system level, (iii) software architecture design level,

and (iv) software unit design and implementation level. We
understand that such abstraction levels should classify artifacts
generated in the overall software development process. Thus,
we considered four types of engineering information: ”Phys-
ical” Structure, Static Interaction, Dynamic Interaction and
Integration . It is possible to observe all the abstraction levels
and the interaction with the types of considered information
in Figure 1.

Fig. 1. Quality Model Criteria based on Abstraction Levels

The nest items are an overview of the architectural aspects
that should be considered at each one of these abstraction
levels.

1) Medical Device at Context Level (CONT) - it describes
how the medical device is used and how it works in its
intended environment [5]. The medical device is consid-
ered as a black box system and the architectural quality
questions in this model are related to how the medical
device interacts with other subsystems, stakeholders, and
other devices.

2) System Level (SYSL) - it describes how the medical
device provides the expected functionality [5]. On this
level, the system is assumed as a white-box and the
architecture description should describe the elements
regardless of weather each functionality is implemented
by software or by hardware.

3) Software Architecture Design Level (SADL) - it de-
scribes the realization of software while abstracting
from details [5]. On this level, the described software
architecture refines all logical components documented
at SYSL considering modules and software components,
the relationship between then and the interface exposed
by each module.

4) Software Unit Design and Implementation Level
(SUDIL) - it describes the implementation of the soft-
ware that is specified at software architectural design
level, the implementation of software units that realize
all modules and software components that is described
in SADL.

Now, we will present which architectural elements are
important to be considered along the intersections between the
abstraction levels and types of engineering information shown
in Figure 1.

2014 IEEE 16th International Conference on e-Health Networking, Applications and Services (Healthcom)

427

In the Physical structure we organize the information engi-
neering elements concerning to the tangible structure of the
medical device. For example, stakeholders, communication
elements, modules, components, units, and so on. Thus, the
categorization of this type of engineering information is:

• The Physical Structure at the Context Level involves
understanding the stakeholders, other devices interacting
with the medical device, and other environmental aspects
such as electromagnetic activities in the environment
where the medical device will be located.

• The Physical Structure at the SYSL comprises execu-
tion platforms and the communication paths among them.

• The Physical Structure at the SADL comprise elements
that provide the understanding of the software in terms
of components and modules, and how they interact.

• The Physical Structure at SUDIL cover code fragments
that realize the software described in the other levels as,
for example, packages, classes, methods, etc.

The Static Interaction engineering information type com-
prises elements related to static relationship of the structures
which make software and hardware of the medical device.
For instance, information changed among stakeholders and
the medical device, information exchanged among the logical,
components, modules and units, etc. Therefore, the categoriza-
tion of this type of engineering information is:

• The Static Interaction at the Context Level involves
understanding the static functional structure including
logical information exchanged among the conglomerate
of medical device, stakeholders, and other systems. For
example, sensor/actuator interface, user interface, actua-
tion and information features.

• The Static Interaction at the SYSL is focused on
the static functional structure of the system as a white-
box, with functions exchanging information via ports.
For instance, functions interface, functions specifications
(required and provide interface) and static interactions of
functions are pieces of information required in this level.

• The Static Interaction at SADL requires elements for
each software subsystem in order to have the complete
understanding of their functionalities. In this way, this
level involves system-level functions which are imple-
mented by software subsystems, modular decomposition
into software components, modules and software compo-
nents interface, software components specification, static
interaction between software modules.

• The Static Interaction at SUDIL comprises elements of
static interaction that involves specific static information
about software units, for example, decomposition of soft-
ware modules and components in software units, software
units interface, specification and static interaction of
software units.

The Dynamic Interaction engineering information type
comprises artifacts which are related to general behavior of
the medical device. Information such as runtime behavior,
actions, or relationship among modules, components and units
modeling an system action are examples of elements. Thus,
the categorization of this type of engineering information is:

• The Dynamic Interaction at the Context Layer involves
understanding: (i) the runtime behavior of the systems
that interact with the medical device; (ii) actions and their

consequences for stakeholders; and (iii) how the system
affect on the environment where the medical device is
located.

• The Dynamic Interaction at the SYSL comprises all
the runtime behavior of the functions.

• The Dynamic Interaction at SYSL includes the dy-
namic behavior of the logical components.

• The Dynamic Interaction at SADL includes the dy-
namic behavior of each software component.

• The Dynamic Interaction at SUDIL includes the dy-
namic behavior of each software modules (which refines
the SADL components)

The Integration engineering information type comprises
artifacts that supports mappings between elements, allocation
of components and assignments of behavioral elements. There-
fore, the information categorization of this type is:

• The Integration at the Context Layer involves identify-
ing the mappings and assignments of logical/behavioral
elements (from static and dynamic interaction) to the
physical structure. We assume that this mapping is in
most cases straightforward.

• The Integration at SYSL comprises information that
supports the knowledge of how the functions are allocated
in the physical structure of the medical device.

• The Integration at SADL involves elements to improve
our understanding of the assignment of functions to
software modules and components.

• The Integration at SUDIL comprises elements that
indicate where the software units are deployed.

A. New Quality Questions for Safety Assessment

In this section, we will discuss some questions which we use
to evaluate safety in the software architecture of the medical
devices. Figures (2, 3, 4, and 5) provide illustrative questions
for each level of the previously described model in Figure 1 in
order to clarify the model’s purpose. The reader should have
in mind that the actual model has a lot more questions and will
be published at a late date by the Brazilian Health Ministry.
Due to space restrictions we selected closely related questions
for each column.

First, for the physical layer we selected questions asking
about safety arguments regarding user perception of the data
exchanged by the medical device and external systems at the
context level. For example, besides other issues, we need
to have clear information about such exchanged data at the
system level. This information can be enriched by asking for
the description of the role of the stakeholders who manipulate
such exchanged data at the architectural level and can be
refined by asking about the description of the interfaces at the
software unit level. Some evaluation questions can be seen in
Figure 2.

For the static interaction layer, we selected questions asking
about a clear description of which logical components will
concretize each safety measure at the context level. For exam-
ple, besides other issues, we need to have information about
explicit traces between the safety-critical components and the
safety-critical modules at the system level. This information
can be enriched by checking the explicit traces between the
conceptual components and the safety requirements at the
architectural level, further it can be refined by asking about

2014 IEEE 16th International Conference on e-Health Networking, Applications and Services (Healthcom)

428

Fig. 2. Quality model questions for physical layer

the explicit traces between the safety-critical software modules
and the safety-critical software units. In Figure 3 we stated
some evaluation questions for each layer.

Fig. 3. Quality model questions for static layer

For the dynamic layer, we selected questions asking about
details of usage scenarios of medical devices at the context
level. For example, besides other issues, we need to have
the description of the sequence of events among logical
components to execute each functionality at the system level.
This information can be enriched by checking if the ordered
sequence of events between software modules is well docu-
mented at the architectural level and can be refined by asking
how the software entities relate to each other considering the
information produced and consumed in the software units.
Figure 4 shows some evaluation questions for the static layer.

Finally, for the integration layer we selected questions

Fig. 4. Quality model questions for dynamic layer

asking about motivations and recommendations for testing
safety-critical logical components at the context level. For
example, besides other issues, at the system level we need
to have indications of what logical components are affected
by any component failures. This information can be enriched
by checking if the deployment strategy for software modules
provides evidence of freedom of interference at the architec-
tural level and can be refined by asking how the safety-critical
software units rely on hardware resources. An example of
evaluation questions at integration layer in Figure 5.

Fig. 5. Quality model questions for integration layer

V. RELATED WORKS

This section briefly discusses some architecture-based safety
evaluation methods. It is important to advise that the almost
all analyzed approaches are based on model driven techniques,

2014 IEEE 16th International Conference on e-Health Networking, Applications and Services (Healthcom)

429

thus the architecture have to be formally described in a specific
language (e.g. Simulink) in order to assess safety applying
model-based evaluation methods. Model-based techniques for
design embedded safety-critical systems have been effectively
implemented for avionics and automotive systems, but in med-
ical systems domain this is still at the beginning. Moreover,
general regulatory bodies (e.g.: FDA) do not obligate the
industry to use model-driven development, consequently the
evaluation quality model for medical device software systems
have to work with any approach for systems specification
and designing, further, regulatory agencies do not have access
to the concrete project (for example, development artifacts),
they just have to assess safety (and another quality attributes)
analyzing project documentation. To illustrate, we can observe
the a set of works that have been focused on the traceability
form safety requirements to the architecture such as in the
Grunke et al. [16] focused on automatic process for trace safety
requirements in the architecture and another approaches like
FTA ([17]), FMEA ([18]), or strategies based on FPTN ([19])
and CFT ([20]).

In addition, the most of safety assessment methodologies
for architecture evaluation have been implemented during the
design and development. On the other hand, all regulatory
bodies need to evaluate the architecture of a product that had
already been built. For example, Rupanov et al. [21] presents
an early model-based safety evaluation of design decisions
based on metamodels that support the task for automotive
domain. Although safety is assessed by the proposed method-
ology they are based on model-based techniques and they need
all the development artifacts. Therefore, there is a lack of
safety assessment methodologies for evaluate architecture of
a medical device systems based on evidences exposed in the
project documentation.

VI. CONCLUSIONS

This paper has discussed critically safety issues in quality
models for software architectures of medical devices. From
our point of view, the existing evaluation guides provided by
the literature were still not sufficient for addressing the safety
quality attribute bringing serious problems for regulation and
even manufacturers. We provided contributions to this field
by showing the architectural perspective of the safety quality
model ordered by the Brazilian government and built by
NUTES and Fraunhofer-IESE. This perspective is structured
in abstraction layers and pieces of information, providing an
useful support for higher level safety arguments.

Current and future works involve, besides the application
of the quality model, the development of a toolset for En-
terprise Architect and Eclipse Modeling Framework able to
specify safety integrity levels and execute such architectural
verifications in UML and SysML models.

ACKNOWLEDGMENTS

This work was partially financed by the NÚCLEO DE
TECNOLOGIAS ESTRATÉGICAS EM SAÚDE - NUTES
- Agreement FINEP 01.08.0613.00MCT/FINEP/AT - PRO-
INOVA - 01/2008.

REFERENCES

[1] J. Webster, Medical Instrumentation: Application And Design,
3Rd Ed. Wiley India Pvt. Limited, 2009. [Online]. Available:
http://books.google.com.br/books?id=bxXcYL29SUMC

[2] ISO/IEC, “ISO/IEC 25000 - Software engineering - Software product
Quality Requirements and Evaluation (SQuaRE) - Guide to SQuaRE,”
Tech. Rep., 2005.

[3] M. D. Mary Beth Privitera and J. Johnson, “Interconnections of basic
science research and product development in medical device design,” in
Proceedings of the 31st Annual International Conference of the IEEE
EMBS. IEEE, 2009.

[4] P. Barbosa, M. Morais, K. Galdino, M. Andrade, L. Gomes, F. Moutinho,
and J. Figueiredo, “Towards medical device behavioural validation using
petri nets,” in Proceeding of the IEEE CBMS’13, 2013.

[5] R. Adler, S. Kemmann, D. Filho, and J. A. Neto, “Safety assessment of
software-intensive medical devices: Introducing a safety quality model
approach,” in Proceedings of the IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW), 2013.

[6] ISO/IEC/(IEEE), “ISO/IEC 42010 (IEEE Std) 1471-2000 : Systems and
Software engineering - Recomended practice for architectural descrip-
tion of software-intensive systems,” p. 23, 07 2007.

[7] P. Clements, R. Kazman, and M. Klein, Evaluating Software Architec-
tures: Methods and Case Studies. Addison-Wesley, 2001.

[8] L. Dobrica and E. Niemela, “A survey on software architecture analysis
methods,” Software Engineering, IEEE Transactions on, vol. 28, no. 7,
pp. 638–653, Jul 2002.

[9] R. Kazman, G. Abowd, L. Bass, and P. Clements, “Scenario-based
analysis of software architecture,” Software, IEEE, vol. 13, no. 6, pp.
47–55, Nov 1996.

[10] R. Kazman, M. H. Klein, M. Barbacci, T. A. Longstaff, H. F. Lipson, and
S. J. Carrière, “The architecture tradeoff analysis method,” in ICECCS.
IEEE Computer Society, 1998, pp. 68–78.

[11] P. C. Clements, “Active reviews for intermediate designs,” Carnegie
Mellon, Technical Note CMU/SEI-2000-TN-009, aug 2000. [Online].
Available: http://www.sei.cmu.edu/library/abstracts/reports/00tn009.cfm

[12] B. Mario, C. Paul, L. Anthony, N. Linda, and W. William, “Using
the architecture tradeoff analysis method (atam) to evaluate the
software architecture for a product line of avionics systems: A case
study,” Software Engineering Institute, Carnegie Mellon University,
Technical Note CMU/SEI-2003-TN-012, 2003. [Online]. Available:
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=6447

[13] N. Rozanski and E. Woods, Software Systems Archi-
tecture: Working with Stakeholders Using Viewpoints and
Perspectives. Pearson Education, 2011. [Online]. Available:
http://books.google.com.br/books?id=nXRF77-gxRkC

[14] GIP, “The generic infusion pump (gip),” 2013,
http://rtg.cis.upenn.edu/gip.php3.

[15] D. Jackson and E. Kang, “Separation of concerns for dependable
software design,” in Proceedings of the FSE/SDP Workshop on
Future of Software Engineering Research, ser. FoSER ’10. New
York, NY, USA: ACM, 2010, pp. 173–176. [Online]. Available:
http://doi.acm.org/10.1145/1882362.1882399

[16] L. Grunske and J. Han, “A comparative study into architecture-based
safety evaluation methodologies using aadl’s error annex and failure
propagation models,” in High Assurance Systems Engineering Sympo-
sium, 2008. HASE 2008. 11th IEEE, Dec 2008, pp. 283–292.

[17] C. A. Ericson, Hazard Analysis Techniques for System
Safety, 1st ed. Wiley-Interscience, Aug. 2005. [Online]. Avail-
able: http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-
20&path=ASIN/0471720194

[18] D. H. Stamatis, Failure mode and effect analysis : FMEA from
theory to execution. ASQ Quality Press, 2003. [Online]. Available:
http://www.worldcat.org/isbn/0873895983

[19] P. Fenelon, J. A. McDermid, M. Nicolson, and D. J. Pumfrey,
“Towards Integrated Safety Analysis and Design,” SIGAPP Appl.
Comput. Rev., vol. 2, no. 1, pp. 21–32, Mar. 1994. [Online]. Available:
http://dx.doi.org/10.1145/381766.381770

[20] B. Kaiser, P. Liggesmeyer, and O. Mäckel, “A New Component Concept
for Fault Trees,” in Proceedings of the 8th Australian Workshop on Safety
Critical Systems and Software - Volume 33, ser. SCS ’03. Darlinghurst,
Australia, Australia: Australian Computer Society, Inc., 2003, pp. 37–46.
[Online]. Available: http://portal.acm.org/citation.cfm?id=1082054

[21] V. Rupanov, C. Buckl, L. Fiege, M. Armbruster, A. Knoll,
and G. Spiegelberg, “Employing early model-based safety
evaluation to iteratively derive e/e architecture design,”
Science of Computer Programming, 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167642313002554

2014 IEEE 16th International Conference on e-Health Networking, Applications and Services (Healthcom)

430

