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Abstract-Nowadays, mobile applications/devices have become 
the trends, especially, when they were gradually shifted from basic 
communication services to supporting more sophisticated service 
provisioning. Mobile applications are usually very light, are nowa-
days likely to be often connected to the Internet, and can be used 
quite easily. However, these applications exhibit some challenges 
related to limited resources they have access to, including limited 
processing power, memory, storage size, battery power, and intermit-
tent network connection. In fact, these considerations have to be 
taken seriously into consideration when developing mobile applica-
tions especially if those applications will be used for critical services, 
for example, to collect and report vital health data over a long period 
of time. In this paper, we study the use of mobile applications for 
monitoring patient’s vital. Mobile devices, through an application, 
are connected to body-strapped biosensors to collect and synchronize 
these parameters with information systems. This synchronization 
should be done in such a way that the cost of synchronization is kept 
low and urgent readings are delivered as soon as possible. To opti-
mize the synchronization process and reduce its cost, we propose and 
validate cost-oriented algorithms. A case study is developed to illus-
trate the applicability and effectiveness of our innovative techniques 
in making continuous monitoring an efficient process. 

I. INTRODUCTION 
Mobile applications are considered as a potential asset to 

contribute to the solution of an enormous worldwide challenge 
such as healthcare resources scarcity, mainly for patients with 
chronic diseases. In this context, it has been shown that 
keeping chronic disease patients out of hospitals as much as 
possible is cost-effective solution beneficial to all stakeholders 
including patients, their families, and health care professionals. 
Patients morally improve their wellbeing when spending most 
of their time with relatives, thus healthcare systems’ resources 
were released and allocated to more critical emergency 
situations. However, outpatients do not benefit from the same 
thorough monitoring that inpatients have access to while in 
hospitals, which at some point might present a threat to their 
life. Mobile applications combined with wireless body sensors 
can be used as a compromised solution to remotely monitor 
outpatients while they are home. Wearable biosensors [1] 
collect health data, relay it to a mobile application deployed on 
smart phones, and then communicate these data to Hospital 
Information Systems (HIS) where around the clock 
surveillance activities are taking place.   

Sensory data have to be communicated to patients and 
health professionals to help taking appropriate and timely 
decisions whenever the patient under monitoring encounters a 
severe health situation. Patients might need to be monitored 

continuously and for a long period of time depending on the 
severity of their health conditions. Such a process presents a 
big defy to mobile applications, and their underlying mobile 
devices. Heavy and continuous communication with biosensors 
generates a huge amount of data that makes storage 
management and synchronization with backend systems very 
costly in terms of network cost, storage space, and battery. 

Due to the above-mentioned challenges, development of 
mobile applications for m-Health requires specific 
considerations all along the development and production life 
cycles. Available resources have to be used with great care to 
reduce the Total Cost of Ownership (TCO). These resources 
include screen space, battery, processor, memory, and network. 
We will limit the scope of this work to the battery and network 
components. Investigation on the other parameters is left to 
future work. 

As mentioned previously, continuous outpatient monitoring 
over a long period of time is likely to generate a huge amount 
of data. For example, this size might be around few dozens of 
Mega bytes per hour for a representative ElectroCardioGram 
(ECG) signal [2]. If monitoring spans over a full working day, 
the size of collected data is in terms of hundreds of Mega 
bytes. These data have to be synchronized with HIS where 
professionals can have a real time view of patient’s vital 
readings. Synchronizing all these data over 3G or while away 
from a charging station is likely to generate a high network 
cost and will quickly drain the battery. For such monitoring to 
be practical, data synchronization has to be smart enough to 
reduce the cost and offer a better view of the patient’s health 
condition. The decision on what to synchronize, when to 
synchronize, and how to synchronize has to be smartly taken, 
on the fly, by the mobile application. This is dynamically done 
in order to give professionals sufficient, and recent data they 
need to take supported decisions but, at the same time, 
minimize the volume of data to synchronize mainly with low-
bandwidth and/or pay-per-usage connections (e.g. Bluetooth, 
3G) and low battery level. 

The main objective of this work is to develop a smart and 
adaptive synchronization approach that can be implemented by 
m-Health applications. These applications will auto adjust 
dynamically to changes in the environment and continuously 
measure the battery level, required battery, and network status 
to make optimized data synchronization decisions. We develop 
and assess algorithms to evaluate the cost of network use and 
its ability of handling data synchronization in different 
situations, including network availability, the current network 
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bandwidth, the urgency of collected data, and the status of 
battery level. These algorithms are embedded into the mobile 
application to decide on the fly between synchronizing all the 
data, only critical data, or store data momentarily locally on the 
mobile. The study of those algorithms will have three main 
stages: 

• A thorough theoretical and analytical study of factors 
impacting the cost of data synchronization.  

• Definition of a cost function to estimate the cost of each 
data synchronization operation. 

• A pragmatic approach will be adopted in order to 
evaluate the effectiveness of our low cost-oriented 
approach and the dynamic decision process.  

The remaining of this paper is organized as follows: next 
section surveys the existing work and solutions on mobile 
health monitoring and data synchronization. Section III starts 
by introducing a thorough theoretical study of factors 
impacting the cost of data synchronization then it describes the 
main algorithms we have developed to optimize data 
synchronization. Section IV details the experimentations and 
results using different scenarios to evaluate the effectiveness of 
our low cost-oriented scheme. Finally, we conclude the paper 
in section V and we point to some future research 
investigations. 

II. RELATED WORK  
During the last decade, patient monitoring using mobile 

applications gained a lot of importance and many projects have 
been conducted to prove their feasibility. Each of them 
used/targeted a certain technology and tried to solve a specific 
problem. As an example, the authors in [3] presented a tool for 
the coordination of different actors (patient, emergency center, 
ambulances, and hospital) involved in urban medical 
emergency management based on wireless mobile technology. 
Service-Oriented Multi-Agent Systems (SOMAS) for Agent 
technology has been used to implement the application.  

Airmed-Cardio [4] is a GSM-based platform targeting 
patients with chronic heart diseases who are in stable condition. 
The system objective is to provide attractive contact between 
patients and health-care agents directly involved in their care, 
and complete specifically defined protocols for follow-up and 
monitoring.  

VirtualCRPs [5]  (Cardiac Rehabilitation Program) is a 
web-based application used to deliver relevant information to 
cardiac patients in remote rural communities. Among the other 
services, the VirtualCRPs provides chat session with 
professionals and allows a self-reported data capture. 

DITIS [6] is a collaborative medical team for home 
healthcare of cancer patients. It supports the dynamic creation, 
management and coordination of virtual medical teams, for the 
continuous treatment of the patient at home, and if needed for 
periodic visits to places of specialised treatment and back 
home. 

Finally, MobiHealth [7] tried to bring together the 
technologies of Body Area Networks (BANs), wireless 
broadband communications, and wearable devices to provide 

mobile healthcare services for patients and health 
professionals. For patients, these technologies enable remote 
care services such as management of chronic conditions and 
detection of health emergencies. For health professionals, the 
technology offers access to information and communication 
services from a mobile device, thus enabling mobility for the 
individual professional and supporting the operation of 
distributed ‘virtual’ healthcare teams. 

All these systems share a common interest, which is home 
delivering of health care to patients. Even though each of them 
has answered to some extent the need of particular patients, all 
were concerned mainly by proving the viability of such 
systems rather than the performance and the concrete TCO of 
such applications.  Deploying these applications at large 
brought a new challenge to researchers: while these 
applications are feasible, they are resources’ consumers. The 
focus shifted from proving the viability to improving the 
performance.   

 In a recent work [8], MobiHealth was extended to take into 
consideration the context changes. They use learning to predict 
the QoS of the provided network and therefore, an intelligent 
mobile service can use the QoS prediction to proactively obtain 
best of best effort service.  

The authors in [9] presented a task redistribution based 
adaptation middleware (MADE). In line with our approach, the 
authors consider battery and network as the context factor that 
drives this adaptation. However, since the task redistribution 
algorithm cannot be performed at the device itself, a 
middleware is responsible to do this task.  

In terms of battery and network use in non–mHealth 
application, a few works have tackled this issue with Internet 
of Things (IoT). Some works are addressed in [10], [11], [12], 
[13], and [14]. However, wireless sensor devices in IoT and 
even in other domains (e.g meteorology) are quite different 
from those in m-Health: 

• Most of IoT can sleep, hibernate, or standby for some 
time, until the next round of readings. M-Health sensors 
have to be up and running all the time so they don’t 
miss critical health deteriorations. 

• Most of IoT sensors do not handle heavy amount of 
data as an ECG sensor for example. 

• Data acquisition frequency and urgency of m-Health is 
usually higher than IoT. 

• Passive RFID tags do not have batteries; they are 
however powered by the interrogation signal.  

In addition to the aforementioned work on mobile health 
applications, many recent papers tackled the problem of data 
management for mobile devices ([15-17] [18]). In [15], the 
authors proposed a Synchronization Algorithms based on 
Message Digest (SAMD) algorithm based on message digest in 
order to facilitate data synchronization between a server-side 
database and a mobile database. The SAMD algorithm makes 
the images at the server-side database and the 
mobile database uses message digest tables to compare two 
images in order to select the rows needed for synchronization. 
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In [18], the authors introduced a unified messaging and data 
serving abstraction for mobile apps. The client side caching 
policies they are proposing reduce the network bandwidth use. 

While the approaches discussed above were successful in 
performing a better data management, our purpose is to 
achieve a context driven data management. We look at the 
correlation between battery-network-urgency of data to guide 
the data synchronization. 

III. SMART MOBILE APPS FOR PATIENT MONITORING 
Mobile devices and applications are used to collect sensory 

data and allow anywhere and anytime monitoring of vital signs 
such as ECG, blood pressure, and body temperature. These 
applications should be sufficiently smart to tackle few 
challenges related to mobility, network disconnection, battery 
drainage, and limited processing capacity of mobile devices. 
Intelligent algorithms will be developed and executed on 
mobile applications to conciliate between these different 
challenges. Thus, minimize their impact on the efficiency and 
the accuracy of the overall monitoring activities. 

In this section, we describe how mobile applications can 
adapt to network conditions/status and devices’ battery level. 
This can be done by adding smartness to the mobile application 
to react/adapt to different network characteristics/profiles such 
as intermittency, limited bandwidth, disconnection, and high 
cost. We also, describe algorithms extending the mobile 
applications with features that handle data collection and 
processing in a smart and efficient way while optimizing the 
cost of battery drainage and network use by the mobile device. 

A. Formal representation of smartness functions 
In m-Health monitoring using mobile devices, the main chal-
lenges are the following: 

1. Accurate readings: a reading of a vital sign is 
insignificant unless its accuracy is appropriate, that is, 
the error margin is within the thresholds approved by 
experts and relevant authorities. 

2. Data synchronization: there are two data stores: one in 
the mobile device and one in the hospital backend. It is 
very important that, at any time, both stores reflect up-
to-date and coherent data while minimizing the 
synchronization cost. 

While the first challenge is out of the scope of this paper, 
we hereafter provide a formal description and formulation of 
the second challenge namely the data synchronization 
problematic involving mobile devices, sensors, and 
applications. Even though the ultimate goal is to have coherent 
stores of data, a sharp consideration has to be given to the 
overall cost of synchronization. This cost depends on a set of 
highly correlated criteria including, availability of network 
connection, capacity of that connection, type of network, size 
of data to transfer back and forth, and mobile device’s battery 
level. 

We formalize in this section the cost function of data 
synchronization. This function has two components: the 
network component and the device battery component. The 
network cost component consists of three sub-namely: network 
type, network bandwidth, and network usage charges. 

However, the device battery level is a linear measure of the 
battery that lies between 0 and 1, where values close to 0 
represent an exhausted battery and values close to 1 represent a 
fully charged battery. There is high correlation between the 
needed battery, the network type, and its bandwidth. For 
example, the battery needed for a given synchronization 
operation is inversely proportional to the available network 
bandwidth; that is, when the bandwidth is low, the battery 
needed is higher and vice versa. Also, the battery needed 
depends on the type of network. For instance, a connection 
over a 3G network consumes more battery than a connection 
over a Wi-Fi network for the same synchronization operation. 

• Let B a battery level of a mobile device, categorized by 
a percentage from 0% to 100%. 

• Let N a network connecting the mobile application and 
the backend server. 

• Let D a Data to be synchronized. 

A Cost Function to synchronize data D (CFD) can be 
calculated based on the Battery Cost (BC) and the Network 
Cost (NC) as follows: 

(1) CFD = fb BC + fn NC 

Where fb and fn reflect the contributions of the battery level 
and the network in the overall cost function. Those 
contributions are mainly based on users’ preferences. In fact, 
these contributions are estimated based on users’ constraints on 
battery and/or networks. For example, if a user is always close 
to a charging station, either in their car, home, or office, the 
battery contribution to the cost function is very low and can be 
a fairly considered as zero. Similarly, if the user spends most of 
their days connected to a Wi-Fi network, the network cost can 
fairly be estimated to be zero. 

1) Battery Cost (BC): The battery cost (BC) is affected by 
two main parameters: 

• Battery required: this is the required battery to perform 
the synchronization of data D. This includes battery to 
prepare, send, receive, and process exchanged data. 

• Battery level: this is the battery level of the device 
before synchronization of data D. 

The battery level might have a higher or even the highest 
contribution into the overall battery cost. For example, if the 
cost of synchronization is low and the actual level of battery is 
80%, the synchronization can be allowed. However, if the 
battery level is less than 10%, such synchronization, if allowed, 
will drain the battery leading to a power shortage. So, the 
contribution of battery level and battery cost are weighted, as 
defined in formula (2): 

(2)     𝐵𝐶 =   𝑤!" ∗
!
!"
+   𝑤!" ∗ 𝐵𝐶D 

Where wbl + wbc = 1 and wbl goes up when the battery level 
is low. 
2) Network Cost (NC): The Network Cost NC can be de-
composed into three components namely: network type, net-
work bandwidth, and network charges. 
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1. The Network Type (NT) represents the underlying 
infrastructure capable of transferring data packets from 
a source to a destination. In most cases, NT is WiFi or 
3G, but it can be Bluetooth or infrared as well. 

2. The Network Bandwidth (NB) is estimated as the 
number of Megabytes/bits of data per second that the 
network can handle. 

3. The Network charge (NC) represents the monetary cost 
of data transmission charged by a service provider. 
This is usually charged per megabytes unless the 
customer has an unlimited flat rate subscription. 

Therefore, the NC function, for a given data D to be 
synchronized, can be formulated in (3) as follows: 

      (3) NC = Size(D) * (wnt*NT + wnb*
!
!"

 + wnc*NC)  

Where Size(D), wnt, wnb, and wnc are the size of data D, the 
weight for the network type, the weight for the network band-
width, and the weight for the network cost respectively. NC is 
inversely proportional to the network bandwidth as a low 
bandwidth usually incurs more effort to transfer data. 

The overall cost can then be reasonably estimated by the 
following equation: 

(4) CFD = 𝑤!" ∗
!
!"
+   𝑤!" ∗ 𝐵𝐶D + Size(D) * (wnt*NT + 

wnb*
!
!"

 + wnc*NC) 

B. Smart use of network and battery  

A network and communication infrastructure will allow 
connecting sensing devices, mobile devices, application serv-
ers, and visualization servers. However, the heterogeneity of 
network protocols, the unreliability and intermittency of mo-
bile networks, and the limited bandwidth of body sensor net-
works will require some adjustments whenever a network is 
unavailable or of low bandwidth.  

Two main network variables should be considered whenev-
er data synchronization would take place. These parameters 
are highly related to the type of network used and are: network 
bandwidth and network cost. For Bluetooth and Wi-Fi, there 
are usually no fees. However, 3G and 4G LTE networks al-
ways apply some fees, which are quite high in some parts of 
the world. The network bandwidth parameter varies from one 
network to another: Bluetooth offers the lowest bandwidth, 
while Wi-Fi, 3G, and 4G LTE offer higher and varying band-
width.  

Body sensors might collect a tremendous amount of data. 
Storing and transferring all of these data to backend servers or 
mobile devices might be expensive. Also, some of the data 
might be inaccurate, out-dated, and/or without any added val-
ue. Consequently, a central need is to develop intelligent 
agents within mobile applications to decide on the following: 

• Which data to retrieve and store?   

• Which data should the mobile application decide to 
share/synchronize with backend server?   

• How to assess the Cost of an operation in terms of 
battery and network costs?  

In the next section, we develop required algorithms for 
smart data management, and a network and battery cost-driven 
decision-making approach to minimize the TCO of mobile 
monitoring solutions. 

C. Algorithms description and analysis  

We describe hereafter, the approach we propose to use to 
optimize data synchronization between a mobile application 
and HIS. Fig. 1 illustrates the algorithms that get activated 
whenever there are new vital signs readings from a body sen-
sor. 

 
Fig. 1. Smart Synchronization of Vital Signs’ Readings  

The algorithm starts by registering two useful listeners with 
the operating system of the mobile application: one listener for 
Wi-Fi network and another listener for a well-charged battery. 
These listeners keep watching the assertion of their condition 
(Wi-Fi or battery) and activate the nonUrgentSynchronization 
procedure when the assertion(s) is(are) true. That is, when a 
Wi-Fi becomes available, the listener activates the procedure. 
The same happens with the second listener when the battery 
gets into a high charge level. 

The mobile app starts acquiring readings from the sensor. 
When new readings are available, their urgency gets deter-
mined. This process is based on pattern recognition and rules 
developed by domains experts for each specific domain. For 
the ECG for example, there are a few reliable methods to rec-
ognize various heart beats patterns ([19], [20]). 

The level of urgency of the new readings dictates what 
happens next. If this level is low, the mobile application saves 
the readings locally and looks for new readings. These non-
synchronized data that are saved locally are going to be syn-
chronized when any of the two listeners activates the nonUr-
gentSynchronization procedure. If the level of urgency is high 
(as per experts rules and patterns), the data should be synchro-
nized immediately. The mobile application will automatically 
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searches for all available networks. If there is no network, the 
user will be requested to connect to a network. If many net-
works are available, the cost of synchronization of each one 
has to be assessed using the cost function of section III.A. The 
synchronization then happens over the network with the least 
cost. Whenever synchronization is performed, important sta-
tistics on battery usage, data size, and network types are up-
dated. These statistics will be used next time there is a need 
for synchronization cost estimation. 

In case of Wi-Fi network, the network cost is mostly free, 
and the cost of battery usage is estimated based on previous 
statistics collected on Wi-Fi network battery consumption and 
the mobile manufacturer benchmarks. In case a cellular net-
work is used, the network cost can be calculated per data unit 
as per service provider’s billing and plans, and the battery cost 
is predicted using previous statistics on cellular network bat-
tery drainage and manufacturer benchmarks. Yet, if a Blue-
tooth network is used, the cost of network is free, but the bat-
tery cost is retrieved from pervious statistics of Bluetooth 
communications battery consumption and manufacturer 
benchmarks. 

IV. EXPERIMENTATION 

To illustrate the effectiveness of the proposed cost function 
and smartness of synchronization, we have conducted a series 
of experimentations monitoring the ECG of a patient. To keep 
the focus on the data synchronization rather than acquiring 
data from the sensor, we have used a patient’s data that have 
already been collected previously using Bioharness body sen-
sor [21]. These data are replayed by a mobile application that 
has been developed to simulate the behavior of a sensor. Re-
playing data offers more flexibility for our experimentations 
as we have full control and tuning over readings’ times, fre-
quencies, synchronization time, availability of network, type 
of network, and available network bandwidth. 

A. Test Bed 

 The test bed used for these experimentations is depicted in 
Fig. 2 and consists of: a database server, an application server 
for Web Services, a network traffic analyser, the main moni-
toring application that implements smartness, and another 
mobile application that replays vital signs readings. 

The main mobile monitoring application offers, in the data 
synchronization section, three options as depicted in the lower 
section of Fig. 3. : 1) synchronize to backend, 2) synchronize 
from backend, and 3) synchronize both ways. 

 
Fig. 2. Test bed 

The upper section of the same figure shows a pre-
synchronization summary after the user clicks the “Sync to 

backend” button. If the user clicks the “Cancel” button, the 
synchronization operation will be aborted. However, if the 
user still wants to go forward, the cost estimation procedures 
described in above sections will be invoked. In the example 
from Fig. 3. , the suggestions are presented in the alert view 
of  

  
Fig. 3. Pre-synchronization 
summary 

Fig. 4. Cost estimation func-
tion suggestion 

B. Test Scenarios 

To illustrate the robustness of the smart synchronization 
approach, we experimented different scenarios as follows:  

• Non-smart individual synchronization: synchronization 
happens at real time over 3G, that is, whenever there is 
a reading, it is sent to the backend. 

• Combined synchronization: readings are collected by 
the mobile application and then synchronized at once to 
the backend. 

• Smart individual synchronization: real time 
synchronization over 3G is performed only if there is an 
urgent reading that needs to be sent to the backend as 
soon as possible. Non-urgent readings are synchronized 
when a Wi-Fi connection becomes available. 

C. Results and discussions 

The experiments we have conducted so far are focusing 
more on the network load than the battery. For the purpose of 
these experiments, values assigned to battery weights in equa-
tion 4 are entered by the user, BL is obtained from the operat-
ing system, and BCD is obtained from previous statistics. 
Moreover, weights for the network cost part are obtained from 
the operating system and previous statistics. 

Our experimentation showed that the size of each ECG 
reading is around 560 Bytes and the size of a request to syn-
chronize data is 320 Bytes. The size of a reading (i.e. 560 
Bytes) includes the value of the reading itself, date of reading, 
time of reading, ID of reading as well as a few additional in-
formation required for the accurate handling of readings at the 
mobile application, HIS, and between them. In one of the 
author’s data plan, the service provider charges $0.14 for each 
megabyte downloaded or uploaded.  Fig. 5.  illustrates a 
summary of the results obtained from our ECG monitoring 
experimentations. The figure shows monthly and yearly syn-
chronization costs for the three scenarios described above. 

Wireshark

Monitoring 
App

Server #1 Server #2

Health 
Data 

Replay App

Network 
Traffic 

Analyzer
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Fig. 5.  shows that the highest cost is when all readings 
are individually synchronized over 3G. In fact, in such syn-
chronization, the overhead represents more than the size of the 
reading being synchronized, generating then a higher cost. If it 
happens that readings are not urgent to an extent that they 
don’t need real time synchronization, they are then grouped in 
one synchronization operation, which reduces the impact of 
the overhead. The smart synchronization represents by far the 
lowest network cost as only urgent readings are synchronized 
over 3G but non-urgent readings are kept on the mobile appli-
cation until a Wi-Fi connection is available. 

 
Fig. 5.   Network cost of smart and non-smart synchronization 

V. CONCLUSION 

Continuous monitoring is very important for patients with 
chronic diseases. Unfortunately, observing the patients in 
hospitals is impracticable and not cost effective for both hos-
pitals and patients. Fortunately, new emerging mobile and 
wireless technologies help in remotely monitoring patients 
while they are home. An appropriate body sensor, connected 
to a mobile application running on a smart mobile phone, can 
read vital body signs and send them to physicians who can 
have continuous monitoring of patients on the go. However, 
sensors might generate considerable amount of data that, when 
synchronized, can represent a higher TCO. 

This paper presented a new approach for a smarter syn-
chronization of health data between mobile applications and 
backend systems. This approach is based on a cost function 
that evaluates, on the fly, the cost of synchronization whenev-
er there are some readings to synchronize back and/or forth. 
The cost function provides best suggestions to the user regard-
ing the cost of synchronization and its urgency (or not). How-
ever, it is up to the user to take the final decision. The experi-
mentations we have conducted showed a tremendous reduc-
tion in the network cost as charged by the patient’s provider. 
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