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Abstract

Natural images are known to have scale invariant statis-
tics. While some eariler studies have reported the kurto-
sis of marginal bandpass filter response distributions to be
constant throughout scales, other studies have reported that
the kurtosis values are lower for high frequency filters than
for lower frequency ones. In this work we propose a reso-
lution for this discrepancy and suggest that this change in
kurtosis values is due to noise present in the image. We
suggest that this effect is consistent with a clean, natural
image corrupted by white noise. We propose a model for
this effect, and use it to estimate noise standard deviation in
corrupted natural images. In particular, our results suggest
that classical benchmark images used in low-level vision
are actually noisy and can be cleaned up. Our results on
noise estimation on two sets of 50 and a 100 natural images
are significantly better than the state-of-the-art.

1. Introduction and Related Work
1.1. Scale Invariance in Natural Images

One of the most striking properties of natural image

statistics is their scale invariance [14]. The most notable

scale invariant property is the power-law spectrum. When

decomposing an image to its local bandpass filter compo-

nents, the power, or the variance of coefficient distributions

decays as a power-law of the form: P(ω) = A
|ω|2−η where η

is usually a small number and ω is the magnitude of the spa-

tial frequency [15]. This property is very robust and holds

across different images and scenes. Various other properties

of natural images have been shown to be scale invariance as

described in [13, 14].

Natural images, in addition to having scale invariant

statistics, are also extremely non-gaussian. The distribu-

tions of the different Fourier coefficients, for example, have

very large peaks, heavy tails and are highly kurtotic. These

distributions can be generally well fitted with a general-

ized gaussian distribution, which captures this distinctive

shape [1]. The kurtosis of a generalized Gaussian dis-

tribution is directly dependent on its shape parameter α .

Assuming x is generalized Gaussian distributed such that

x∼GG(μ,σ2,α) where μ is the mean, σ2 the variance and

α is the shape parameter, the kurtosis of x is:

κx(α) =
Γ( 1

α )Γ( 5
α )

Γ( 3
α )2

(1)

Where Γ is the standard gamma function [4]. As can be

seen, the kurtosis is inversely related to the shape parameter

α . For natural images, α is usually rather small, having

values of between 0.5 and 1 [15].

In light of this, one would expect to see some sort of

scale invariance in the kurtosis of marginal coefficient dis-

tributions, specifically, a reasonable assumption would be

that the kurtosis should be constant throughout scales. This,

however, is not always the case. There are inconclusive ev-

idence to whether the kurtosis values change with the scale

of the measured filter response distribution. In [6] it has

been reported that the kurtosis is constant throughout scales

for DCT filters marginal distributions, whereas in [1] it has

been reported that the kurtosis changes with scale. Specif-

ically, in [1] it is reported that for higher frequencies, the

kurtosis values are lower than for the low frequency ones.

Figure 1 shows two different natural images, one is a

natural scene captured in good light conditions and the other

is the ubiqitous “Lena” image, which also depicts a natural

scene. As can be seen in the figure, while the kurtosis values

for the natural image are more or less constant throughout

scales, the Lena image displays changes in kurtosis values

in different scales. Higher frequency filter responses have

less kurtotic distributions than lower frequency ones.

In this work we propose a model which explains this dis-

crepency. We suggest that the kurtosis of marginal distribu-

tions in clean, natural images should be constant throughout

scales, and that noise added to the image at various stages

of production causes the kurtosis values to change, and vi-

olates the scale invariance principle. Figure 2 shows the

result of adding noise at different standard deviations to a
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Figure 1: Kurtosis values for two different natural images.

Top row on the left is the kurtosis profile - the kurtosis as a

function of component number, or frequency, for the Lena

image. Kurtosis values for higher frequencies have lower

values than for low frequencies. In the middle of the row

are the response histograms of two components for this im-

age - the 12th (Low Frequency) and 55th (High Frequency)

normalized by their variance. As can be seen, the lower

frequency have a higher peak than the high frequency, mak-

ing it more kurtotic. Bottom row shows the same plot for

a clean natural image, taken at good light and downscaled.

Kurtosis values are constant throughout scales. This can be

seen in the response histogram as well. All results are for

8×8 DCT filters, both images are 512×512 pixels.
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Figure 2: Result of adding noise at different standard devia-

tion values to a clean image. The figure depicts the kurtosis

of marginal filter response distribution for the DCT filter

basis (8×8 pixels) as a function of spatial frequency. As

the noise standard deviation rises, the kurtosis values drop,

and the shape of the graph distorts with more change in the

higher frequencies.

clean, natural image. As the noise standard deviation rises,

kurtosis values drop, and more so for higher frequencies.

1.2. Estimating Noise Standard Deviation in Images

Many low-level computer vision algorithms combine the

image evidence with a prior or regularization term. The rel-

ative weight of these two terms depends crucially on the

observation noise and many computer vision algorithms as-

sume this noise level is given as input to the algorithm

[12, 11, 16, 18]. Different noise models are used in different

algorithms but by far the most common model for noise is

an additive, white Gaussian noise (sometimes referred to as

AWGN). There has, however, been much effort to estimate

the observation noise automatically. For the case of color

images, Liu et al. [8] showed how an assumption of piece-

wise constant color allows estimating noise from a single

image.

For gray level images, the MAD framework [19] uses

the deviation from a smooth image model to estimate the

noise. Specifically, two state-of-the-art methods [2, 10] take

a similar approach. A Laplacian filter is convolved with

the image, removing all second order dependencies between

neighboring pixels. Since pixels in natural images have very

high correlations between neighbours, this effectively re-

moves most of the information in the original image. The

only information that remains is at edges in the original im-

age and the noise it self. Estimating the noise variance (or

standard deviation) from the Laplacian image usually re-

sults in overestimation. This overestimation is due to edges

contributing to the overall variance. To compensate for this,

[2] apply a non-linear decay function over higher values of

the block variance histogram in an iterative manner. [10]

take a different approach - a Sobel edge detector is applied

to the image, and using an adaptive threshold, edge pixels

are marked and removed from the statistics. Both meth-

ods work quite well in general, but in images with prevelant

edges, they overestimate the noise variance considerably.

The most similar approach to ours is that of Stefano et al.

[3]. However, they assume a Laplacian distribution for the

marginals, and do not assume anything about scale invari-

ance or the relation between different wavelet coefficients.

They do note, however, that their method works best for

higher frequencies in which the SNR is lower - where the

change in kurtosis is more pronounced.

We propose a method for noise estimation the relies on

the assumption that kurtosis values of different scale filter

distributions should not change with scale, and that any sys-

tematic change in these values is due to added noise. Our

method performs much better on low-noise corrupted, elab-

orate natural image than current methods, and is compara-

ble to other methods when the noise is higher, or the image

simpler.

2. Model

2.1. Noise and the Generalized Gaussian Distribu-
tion

We start by modeling the change in kurtosis of a gener-

alized Gaussian distributed random variable due to added
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Gaussian noise. Denote x a generalized Gaussian random

variable such that x ∼ GG(μ,σ2
x ,α) and denote η an in-

dependent Gaussian random variable with zero mean and

variance σ2
n . Denote y a random variable such that:

y = x+η

We wish to calculate the kurtosis κy of y. Going back

to images, x would represent the original distribution for

a local coefficient (for example) in the clean image, η the

noise added and y the measured coefficient distribution from

the noise corrupted image.

In this work, we refer to kurtosis as the fourth central

moment normalized by the variance squared, or:

κ =
μ4

σ4

This is not the same as excess kurtosis which also in-

cludes a −3 term that makes the kurtosis of the Gaussian

distribution zero. Due to the independence of noise, the

variance of y is simply the sum of σ2
GG and σ2

n or:

σ2
y = σ2

x

(
1+

σ2
n

σ2
x

)

The fourth central moment of y is easy to calculate using

the cumulants and independence of noise:

μ4(y) = 3σ4
x

(
1+

σ2
n

σ2
x

)2

+σ4
x (κx(α)−3)

Where κx(α) is defined in Eq. 1. Finally, by normalizing

with the squared variance calculated above we get:

κy =
κx(α)−3(
1+ σ2

n
σ2

x

)2
+3 (2)

Using this result we can predict the kurtosis of a marginal

filter response distribution taken from a noise corrupted im-

age, given the original image. This, however, is not usually

the case as the original image is typically not available. In

the next section we describe a method to estimate σ2
n using

measurements of the noisy variable y and the assumption

that κx is unknown, but constant throughout measurements

of x for different scales.

2.2. Noise Estimation using Scale Invariance

At the base of our noise estimation procedure is the as-

sumption that the original, uncorrupted image had scale in-

variant statistics. Specifically, we assume that the kurtosis

of marginal filter response distributions for the original im-

age is an unknown constant, and that adding noise to the im-

age resulted in changes to kurtosis values throughout scales

for the corrupted image.

Noise SD

K
u

rt
o

sis

Minimization Function − Log Scale
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Figure 3: Function space for Eq. 3. The minimum is the

actual point found numerically. Noise added to the image

had a standard deviation of 10.

The first step of the algorithm is gathering statistics over

the noise corrupted image In. We convolve the image with

each filter from the N×N DCT basis, to produce a response

image for the yi for the i-th filter. We estimate the variance

and kurtosis for this response image to obtain σ̂2
yi

and κ̂yi .

We do this procedure for every component i in the range

2..N2, hence ignoring the DC component.

Given these variance and kurtosis measures, we wish to

estimate the variance of the added noise. This is done by

finding the pair κ̂x, the kurtosis of the original uncorrupted

image distribution and σ̂2
n the variance of the noise, which

minimizes:

κ̂x, σ̂2
n = argmin

κx,σ2
n

N2

∑
i=2

∣∣∣∣∣∣∣∣∣
κx−3(

1+ σ2
n

σ̂2
yi
−σ2

n

)2
+3− κ̂yi

∣∣∣∣∣∣∣∣∣
(3)

Figure 3 shows an example of what the function space

look like, when the noise added to the image has a standard

deviation of 10. As can be seen, there is a rather pronounced

valley at the minimum point (which the was numerically

found).

2.3. Non Gaussian Noise

Although the above model assumes white Gaussian

noise, it assumes that it is white and Gaussian in the filter

domain only. Since many types of independent noise in the

pixel domain will mix in to Gaussian noise in the frequency

domain, this method work with other types of noise. The

summation over the noise in pixels while calculating the re-

sponse image for the DCT basis causes the distribution of

the sum to be Gaussian - due to the central limit theorem

and noise independence, an example can be shown in Figure

4, even though the noise is very non Gaussian in the pixel

domain, it becomes Gaussian in the coefficient domain. In

Section 3 we show that adding uniform noise to images, for

example, does not change the performance of our method.

Other image corruption methods, such as JPEG com-

pression artifacts, quantization noise and sensor noise were
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Figure 4: Response histograms of independent Gaussian,

Uniform and Poisson pixel noise. Noise images were

512× 512 pixels, having variance 1 and mean 0. Coeffi-

cient domain histograms made using an 8×8 DCT filter. It

can be clearly seen that while the three look very different

at the pixel domain, all three are mixed to be Gaussian with

the same variance and mean in the coefficient domain.

tested. Results are shown in the next section.

3. Results
3.1. Methods

We first compared the proposed method with existing

methods by synthetically adding noise to clean images. We

minimized equation 3 using MATLAB’s fminsearch func-

tion.

3.2. Noise Estimation Results

When the original image is relatively simple, such as the

one depicted in Figure 5 algorithms perform similarly, esti-

mating the noise variance well for a range of values. How-

ever, when using a more complex image, with a lot of tex-

tured areas such as the one depicted in Figure 6, the picture

change. All results are means over 3 noise realizations -

standard deviations were not included in the graphs because

they were too low for all methods to be visible in the graph.

Due to the large amount of edges in the image in Fig-

ure 6, the methods in [2, 10] over estimate the noise greatly.

Our method performs better on the low to medium noise

regime (σn between 1 to 15). As the noise levels rise, it is

harder for our method to accurately estimate the noise. The

reason for overestimation of the noise SD in other methods

is that the textured areas have a lot of edges, causing the

Laplacian filtering be less effective at separating the noise

from the original image. Since the textured areas are from a

natural image and have scale invariant statistics, our meth-

ods handles this quite well, and enables us to recover the

noise SD more precisely. When the noise is sufficiently

large, the variance contributed from the edges is small rela-

tively to the noise variance, hence the similar performance

at this regime. Table 1 summarizes results for all experi-
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Figure 5: Noise estimation on a simple image, with no

prevalent edges (BIRD). All methods estimate the noise cor-

rectly for a range of values.

ments. In the results table the estimation results for uniform

noise can be observed. It seems that all methods handle this

type of noise relatively well. Using different patch sizes for

our method resulted in little difference in performance, it

seems that the central limit theorem comes in to play even

on small patch sizes (8×8 in this case, 64 pixels are more

than enough).

Finally, we estimate noise in 50 images from the Van

Hateren natural image database [17] as well as for a 100 im-

ages from the Berkeley database [9]. White Gaussian noise

was added to each of the images and noise was estimated

from them. It is obvious our method is on par or better than

other methods for all noise levels, for both databases. Cal-

culating the relative error for all noise levels over the van

Hateren database we obtain a mean error rate of 3%, while

other methods obtain 22% for Rank et al. and 28% for Cor-

ner et al. For the Berkeley our method obtains an average

error that is 9%, while other methods obtain 49% (Rank et

al.) and 65% (Corner et al.). Differences were even larger

when neglecting the lowest noise level estimation (in which

even a small error in estimation leads to a large relative er-

ror, results are then 1% for our method and 20% (Rank et

al.) and 22% (Corner et al.)). Results are shown in Table 1.

3.3. Other types of noise and corruption scenarios

We tested the proposed method under several other im-

age corruption scenarios. Under all scenarios under which

there’s no clear parameter for the noise standard deviation

σn, we calculate the standard deviation of the difference be-

tween the original image I and the corrupted image In such

that:

σn = 〈|I− In|〉 (4)

Where the mean is over all the pixels in the images.

The first scenario we tested is first motion blurring an

image, and then adding Gaussian noise to it. This scenario

is important as correct estimation of noise prior to image

deblurring is important to minimize common artifacts [7].
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BIRD FIELD Van Hateren Berkeley

σn σ̂n σ̂ R
n σ̂C

n σ̂n σ̂ R
n σ̂C

n σ̂n σ̂ R
n σ̂C

n σ̂n σ̂ R
n σ̂C

n

1 0.68 1.01 1.1 2.06 7.16 8.3 0.89±0.71 2.02±1.19 2.25±1.1 1.5±1.8 2.9±2.8 3.7±2.8

3 2.8 3.05 3.13 3.67 8.04 8.76 2.92±0.62 3.64±0.89 3.75±0.72 2.9±1.8 4.5±2.3 4.9±2.3

5 4.83 5.11 5.14 5.52 9.43 9.56 4.96±0.59 5.47±0.72 5.55±0.52 4.9±1.9 6.4±2 6.6±1.9

10 9.98 10.11 10.08 10.35 13.56 12.89 10.13±0.89 10.2±0.49 10.2±0.48 9.7±1.8 11.1±1.6 11.1±1.3

15 15.15 14.97 14.98 15.34 17.9 17.05 15.32±1.13 15±0.38 14.87±0.62 14.7±1.8 15.9±1.3 15.7±1.1

25 25.47 24.75 23.73 25.57 26.8 26.27 26.33±1.81 24.65±0.28 23.9±1.47 24.8±2.0 25±1.0 25±1.2

〈ε〉 7% 1% 4% 24% 155% 176% 3% 22% 28% 9.8% 49% 65%

Table 1: Results summary for images and methods presented, for each image the first column is our method estimation σ̂n,

the second Rank et al. σ̂R
n and finally Corner et al. σ̂C

n . Last row is the average relative estimation error. On 50 images

from the Van Hateren natural image database we obtain an average 3% error rate, while current state-of-the art method obtain

22% and 28%. Results for the Berkeley database (100 images) are similar, our method out-performs current state-of-the-art

methods.
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Figure 6: Noise estimation on a more complex image hav-

ing a lot edges and texture data (FIELD). With low noise

standard deviation other methods perform poorly, overesti-

mating the noise by a large percentage. Out method per-

forms much better, estimating the noise standard deviation

much better.

Figure 7 shows the result of such a scenario - it seems that

none of the methods is affected in any way by the blurring

operation, and all methods perform well in estimating the

noise standard deviation.

Second we tested whether corruption due to quantization

can be estimated using this method. We quantized 256 gray

scale levels images to 128, 64, 32, 16, 8 and 4 levels, noise

standard deviation was estimated as in Equation 4. From

the quantized image we tried to estimate this standard de-

viation. The proposed method works quite well, results can

be seen in Figure 8.

Third, a more realistic noise scenario was used. As was

done in [8], we obtained a Camera Response Function (or

CRF) from [5]. With this CRF we inversely mapped an
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Our method
Perfect Estimation
Rank et al.
Corner et al.

Original Image

Figure 7: Noise estimation under motion blur. The image

was first blurred with a motion blur mask and then corrupted

by noise. Noise was then estimated by several methods. It

seems that all methods estimate the noise well for a range

of values.

intensity image into a lightness image, added noise to the

lightness image and mapped the lightness image back to an

noisy, saturated, intensity image. This effectively simulates

the sensor noise of a digital camera for a single channel.

Results of noise estimation can be seen in Figure 9. All

methods slightly underestimate the noise in the image. The

reason for this is the clipping of the noise due to the CRF’s

saturation reduces variance near the extreme values (near 0

and near 255).

Finally, we tested whether JPEG corruption can be esti-

mated using the proposed method. A clean image was com-

pressed in the JPEG format using different quality levels.

The compressed images were then used to estimate the cor-

ruption in them and compared to the standard deviation of

the difference image. Results were very poor for all meth-

2213



0 2 4 6 8
0

1

2

3

4

5

6

7

8

True noise SD − σ
n

Es
tim

a
te

d
 n

o
ise

 S
D

Noise Estimation Results

 

 

Our method
Perfect Estimation
Rank et al.
Corner et al.

Quantized Image − 4 Levels

Figure 8: Noise estimation under quantization. The 256

gray scale level image was quantized to 128, 64, 32, 16, 8,

and 4 levels. The standard deviation of the difference image

between the original and quantized image was used as the

true noise standard deviation. Estimation was done directly

on the quantized image. Our method out-performs other

methods on all quantization levels.
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Figure 9: Noise estimation under simulated sensor noise.

All methods slightly underestimate the noise in the image,

due to the saturation caused by the CRF.

ods. It seems that this kind of artifacts disrupt the kurto-

sis of marginal filter distributions in such a way that this

method can not handle properly. Specifically, since JPEG

compression is primarily a frequency domain operation, the

distributions change radically, having very extreme kurtosis

values which are inconsistent with the above model.

3.4. Uncovering the original Lena

One particularly interesting example is the famous

“Lena” image. The Lena image is very old - photographed

in 1972 and scanned in 1973. One can only assume that

scanning and printing technology of these days were not of

the highest grade, and noise has probably corrupted the im-

age to some extent. Looking at the kurtosis values, this is

clearly evident as was shown in Figure 1. It would be in-

teresting to see if one can estimate the noise in the original

Lena image, and maybe denoise it, uncovering the original,

clean image.

Estimating the inherent noise in the original, uncorrupted

image by our method yields a standard deviation of σ̂n =
2.08. Other methods yield a bit more - this implies that

Lena in itself is noisy, as the original kurtosis profile hints

at. Taking this into account, it seems that in denoising ex-

periments with Lena, which are very common [11] there is a

maximal PSNR value that can be taken into account. When

measuring the PSNR between the original image and the

denoised image in a denoising experiment, any result above

41.76dB might not be possible without over fitting. It can

certainly be the case that a denoising algorithm will discard

some of the inherent noise in the original image, and that

when measuring the PSNR value with the original image

one will get a lower value for cleaner images. Of course,

the inherent noise in Lena is not necessarily additive, white

or Gaussian so the statement above should be taken with a

grain of salt, but nevertheless, the noise is present.

Assuming that Lena is noisy, can we uncover the orig-

inal, uncorrupted Lena image? We applied a simple

Bayesian denoising scheme which assumes a Generalized

Gaussian model for marginal filter distributions. We use

our proposed noise estimation method to estimate the noise

standard deviation in the image, and also the constant kur-

tosis value underlying in the original image. Using these

two parameters, we estimated the MAP value of local DCT

coefficients for all 8×8 patches of the images, and then av-

eraged the inverse DCT results to obtain a denoised image.

Results can be seen in Figure 10. Not surprisingly, esti-

mating the noise standard deviation of the denoised image

using our method yields a very low value (0.000001). This

reason for this is obvious when looking at the kurtosis of

the denoised image - as can be seen in Figure 11 it is al-

most constant throughout scales. Now we can measure the

PSNR value between the original (which has noise in it) and

the denoised version (which is assumed to be noise free) -

this yield a PSNR of 42.1dB, consistent with what we sug-

gest above. Denoising with a second algorithm, BRFOE by

Weiss and Freeman [18] yielded similar results (see Figure

10). This is interesting because this denoising model does

not assume scale invariance, and yet still, noise estimation

by our method yields a very low value, since the kurtosis in

the denoised image is rather constant.

4. Discussion and Future Work
In this work we describe and explain a baffling phenom-

ena. When measuring the kurtosis of marginal filter re-

sponse distributions in natural images, in many (but not all)

natural images, values of kurtosis for lower frequency filters

are higher than high frequency ones. This is in contrast to

the scale-invariant nature of natural images. We argue that

clean, natural images should have a constant kurtosis value

throughout scales, and propose that deviations from this are

due to noise inherent in the image. Using this assumption

we show how the noise level in a corrupted image can be
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MAP Abs. Diff

Figure 10: Denoising results for the original Lena image

using simple scale-invariant Bayesian and BRFOE denois-

ing. On the top left is the original image (detail), on the

top right is the denoised image (BRFOE). Details are fully

preserved in the denoised image, but noise is much less ap-

parent. MAP denoising is on bottom left. Difference image

is scaled, and with BRFOE image.
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Figure 11: Kurtosis plot for the denoised Lena image and

original. An almost constant kurtosis throughout most of

the scales is apparent in the denoised image. The dashed

line shows the Kurtosis estimated by our noise estimation

algorithm. Left is the result from scale-invariant Bayesian

denoising, right is the BRFOE result.

accurately estimated, for a range of scene types and noise

levels, and under different corruption scenarios.

A particularly intriguing example is the ubiquitous Lena

image - a very common benchmark image - which we show

here to be noisy. We showed that this image is noisy in its

original form, and using it as "ground truth" in low-level

vision experiments should be done with caution.

Future work will include several directions. The first is

investigating what other types of image corruption come

into play when examining the kurtosis of marginal distri-

butions. Second, handling non-white noise should be rel-

atively simple as long as some model for the noise power

spectrum is assumed. Finally, there’s still the possibility

that the kurtosis profile should have another kind of scale

invariance, power-law or other, but not necessarily con-

stant (which is a special case of power-law). Extending this

method to include power-law is possible, but requires fur-

ther work as merely adding another parameter to the mini-

mization or model will not work.
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