
OBJECT-BASED MULTIPLE SPRITE CODING
OF UNSEGMENTED VIDEOS USING H.264/AVC

Matthias Kunter∗ , Andreas Krutz∗, Michael Dröse∗, Michael Frater∗∗ , and Thomas Sikora∗

∗Communication Systems Group ∗∗School of IT and EE
TU Berlin University of New South Wales

Berlin, Germany Canberra, Australia

ABSTRACT
In spite of recent progress in the development of hybrid block-based
video codecs, it has been shown that for low-bitrate scenarios there
is still coding gain applying object-based techniques. We present a
sprite-based codec, based on latest H.264 features using an inbuilt
segmentation approach for scenes recorded by a rotating camera.
The segmentation itself is built up on reliable background estima-
tion from the sprite and short-term image registration. Moreover, we
generate multiple sprites based on physical camera parameter esti-
mation that overcome three of the main drawbacks of sprite coding
techniques. First, the coding cost for the sprite image is minimized.
Second, multiple sprites allow temporal background refresh and fi-
nally, registration error accumulation is kept very small. Experimen-
tal results show that this coding approach significantly outperforms
latest H.264 extensions applying hierarchical B pictures.

Index Terms— Object-based video coding, sprite coding, mul-
tiple sprites, H.264/AVC

1. INTRODUCTION

The latest developments of advanced hybrid video coding techniques
have resulted in several extensions of the well-known H.264/AVC vi-
deo coding standard [1]. Due to its increased flexibility compared to
earlier standards (MPEG-1,2,4), new coding strategies, e.g. the em-
ployment of hierarchical B pictures, can easily be applied [2]. Howe-
ver, it has been shown that redundancy reduction based on preceding
video analysis outperforms classical hybrid coding for several ty-
pes of videos. Especially for low bit-rates object-based video coding
(OBVC), the use of sprite techniques is very promising [3].

Sprite-based coding has been successfully standardized as part
of MPEG-4 visual. Nevertheless, there exist only a few publications
evaluating the performance and comparing it to other techniques [3].
The reasons for this are manifold. One main problem is the gene-
ration of different VOPs, i.e. the object segmentation. It is unlikely
that commonly recorded video carries the segmentation information.
Therefore, applicable sprite codecs have to inherently segment the
independently moving foreground objects. Recently some authors
have presented their segmentation methods for sprite coding, e.g. [4].
We approach the segmentation problem by an extended background
subtraction, where the background is estimated from the blended
sprite itself. To increase robustness, we also exploit background esti-
mation of the short-term image registration, which has less errors in

This work was developed within 3DTV (FP6-PLT-511568-3DTV), a
European Network of Excellence funded under the European Commission
IST FP6 programme.

M. R. Frater was supported in this work by the Australian Research
Council under project DP0667074

the background region. A combination of both object masks yields
very precise segmentation results.

A second problem for sprite-based coding techniques is the li-
mited objective reconstruction quality of the movie background. Due
to error accumulation and spatial distortions in the construction pro-
cess the re-projected frame is degraded. Subjectively those errors are
often irrelevant, but for SNR-based assessment the distortions incre-
ase with the temporal distance to the reference frame. Also the size
and thus the coding cost of the sprite grows quickly due to geometri-
cal properties of the underlying projection model. Moreover, if the
camera rotates over 90 degree with respect to the reference frame
a single sprite would be impossible to construct. In contrast to so-
me heuristical approaches, Farin [4] proposes an image size-based
algorithm for the construction of multiple sprites to overcome these
problems. In our approach the sequences are parted accordingly to a
rough estimation of rotation angles and focal lengths of the recording
camera [5]. Thus, the assignment of frames to a certain sprite is not
necessarily done in a sequential order. This fact is especially import-
ant for recurrent video background content. Inherently the multiple
sprite approach enables a refresh of the decoded background which
is helpful in scenes with slightly changing background objects.

We utilize H.264/AVC for coding of the objects. The texture of
the multiple sprites is coded as intra frame and the segmented fo-
reground is adapted to the macro block structure and coded in an
IBBB... frame structure with GOP = 15. The binary mask co-
ding utilizes the binary arithmetic coder “M-Coder” of H.246/AVC
and generates the side information together with the transformation
parameters. With this work we provide an extended coding mode
being chosen for low-bitrate ranges for certain types of videos with
rotational camera motion.

The remainder of this paper is organized as follows. The camera
calibration and the subsequent multiple sprite construction is des-
cribed in Section 2. Section 3 presents the H.264/AVC-based sprite
coding scheme which includes the devised segmentation algorithm.
Experimental results are given in Section 4 while Section 5 conclu-
des the paper and outlines future work.

2. MULTIPLE SPRITE CONSTRUCTION

In this section, we give an overview of the techniques applied to
construct multiple sprites for optimal coding. First, global motion
estimation, i.e. the short-term registration, is presented. It is the base
for our coarse calibration technique and is also used for sprite con-
struction and foreground segmentation (see next Section).

I - 651-4244-1437-7/07/$20.00 ©2007 IEEE ICIP 2007

Fig. 1. Rotation angles for test sequence “Biathlon” and sequence
partitioning according to y-rotation for multiple sprite construction

2.1. Image Registration

The performance of the whole sprite coder critically depends on the
estimation of the background object motion. Therefore, it is very
important to apply an image registration technique with very accu-
rate estimation of the higher-order motion parameters, in our case of
the 8-parameter perspective motion model. For this, a gradient-based
approach is applied using additional techniques, such as windowed
phase correlation based initialization, image pyramid decompositi-
on, and image up-sampling applying wavelet filter. A detailed des-
cription of the utilized image registration algorithm can be found in
[6].

2.2. Physical Parameter Estimation

Concatenating the short-term perspective camera parameters (homo-
graphies Hn−1,n) in a recursive way yields non-exact long-term pa-
rameters representing the transformation H0,n between any frame
and the reference frame. These homographies are the base for an ro-
bust but coarse camera calibration technique, published in [5]. Here
we exploit the fact that for common camera setups the homographies
can be decomposed in a product of intrinsic and extrinsic camera pa-
rameter matrices

H0,n = FnR0,nF−1
0 (1)

=
1

α0,n

⎛
⎝ r00 r01 f0r02

r10 r11 f0r12

r20α0,n/f0 r21α0,n/f0 r22α0,n

⎞
⎠ ,

where R0,n is the rotation matrix between frame 0 and n and Fn

and F0 contain focal length values of both views. After computing
the focal length ratio α0,n = f0/fn we calculate the focal length of
the reference frame as median of all solutions resulting from Equ. 1.
This is done by exploiting orthogonality and constant vector norm
constraints for the matrices H0,n. Knowing all focal lengths the ro-
tation angles can finally be computed using trigonometrically pro-
perties of the center points of every image [5]. Figure 1 shows the
rotation angles for sequence “Biathlon”. The main motion is a left
pan of the camera.

2.3. Sprite Generation

To split a video shot into several sequences, we first compute angle
division for the rotation angle (ϕy or ϕx) with the maximum overall
rotation Δϕmax. We minimize cost function C with respect to the

Fig. 2. Partition of a sequence into multi-sprites for panning camera
with constant focal length

diffusion

GenerationImage Registration
Windowed

Calculation
of the error
frames

Video
Sequence

Sprite
Reconstruction

Segmentation
using anisotropic

filteringerror frames
frame−to−frame
Calculation of the

Combinung the
binary masks
and cut off the
foreground
objects

sequence
Object and mask

Segmentation
using anisotropic

Sprite

Fig. 3. Flowchart of the motion-based object segmentation using ani-
sotropic filtering

number of angles M in order to find the number of sprites to be
generated for one rotation plane.

C (Δϕmax, M) =

M−1∑
i=0

fmax,i · 2 tan

(
Δϕmax

2
+

FOV

2

)
(2)

Thus, we optimize the sprite memory cost with respect to the sprite
image size along one dimension. Figure 2 shows exemplarily the par-
tition of a horizontal pan for the generation of two sprites. Note that
the horizontal latitudes of the multi-sprites together is much smaller
than the single sprite latitude. The reference frame is chosen to be the
middle frame of a sub-sequence with respect to the rotation angle.
Sprites are finally constructed by applying direct frame-to-mosaic
registration and advanced median blending to remove artefacts from
the foreground objects.

3. OBJECT-BASED CODING USING H.264/AVC

The sprite coding approach using H.264/AVC is presented in the fol-
lowing. An overview of the whole codec is shown in Fig. 4. After the
multiple sprite generation, sprite-based robust foreground segmen-
tation is used. Sprites, foreground textures, mask information and
transformation parameters are then coded independently.

3.1. Object Segmentation

The segmentation approach is based on pre-computed error frames.
For improving robustness and reliability, we compute error-frames
for the re-projected sprite images and for the compensated adjacent
frames using short-term transformation parameters. The former one
is more sensitive in image regions where foreground objects appear
while the latter is almost errorless in the background region. Combi-
ning the results yields very precise segmentation masks. A flowchart
of the segmentation approach is shown in Figure 3. After generating
the error image on the luminance channel, anisotropic Gaussian filte-
ring is performed on the absolute values. This is achieved by locally

I - 66

Image
Registration

...

Coded Sprite

Coded Foreground
Objects Sequence

Binary Mask
Encoder

Side Information

Sequence
Foreground Objects

Motion
Param.

AVC

...
Coded Foreground
Objects Sequence

Coded Sprite

Coded
Binary Mask Binary Mask

Decoder

Side Information

Generation

Segmentation
Object

Binary Mask

MUX

Binary Mask
Coded

Encoder

Multi−SpriteMulti−SpriteMovie

DE
MUX

Decoded Foreground
Objects Sequence

Decoded Binary Mask

Decoded Movie
Decoder

Object−Based

Decoded Multi−Sprite

Decoder
AVC

Fig. 4. Object-based video codec (OBVC) using multiple sprites and inherent segmentation

(a) Original frame (b) Foreground object

(c) Original frame (d) Foreground object

Fig. 5. Segmented foreground objects, (a)-(b): frame 176, “Stefan”;
(c)-(d): frame 135, “Biathlon”

solving the anisotropic diffusion function

It = div (ρ(|∇I|)∇I)) . (3)

The images are then binarized applying an adaptive threshold depen-
ding on the overall error frame energy. After morphological filtering
of the binary images and removing small objects the masks are com-
bined using a logical AND-operator. Figure 5 shows segmentation
results for sequences “Stefan” and “Biathlon”. Since for “Stefan”
a pre-generated mask was available we compared our segmentation
results and measured an average Precision value P = 81%. The ave-
rage Recall is R = 85%. Due to expansion of the masks to fit the
macro block coding structure the whole object is segmented.

3.2. Texture and Binary Mask Coding

The textures of the sprite and the foreground objects are indepen-
dently coded using H.264/AVC (see Figure 4). As coding software

we used the JSVM version 6.5. To efficiently code the foreground
the objects are expanded to fit to macro block structure. We applied
coding in a hierarchical B picture scheme IBBB... with a GOP length
of 15 frames, i.e. direct access every 0.5 seconds [2]. The sprite itself
is coded as I picture.

The binary mask coding scheme uses the binary arithmetic co-
der “M-Coder”, which is specified in the H.264/AVC standard. Eight
contexts are initialized to model 8 possible spatial states for every pi-
xel to code. In advance to the coding, the mask is divided into 16x16
blocks. The transformation parameters are coded as four frame cor-
ner point correspondences using 3 bytes per corner point and build
the side information.

4. EXPERIMENTAL RESULTS

We conducted our experiments on sequences “Stefan” (352x240, 30
fps, 295 frames) and “Biathlon” (352x288, 30 fps, 195 frames). For
comparison we also examined the single sprite case. As reference
we used H.264/AVC applying hierarchical B pictures and the same
structure as described in Section 3. Figures 6 and 7 show the resul-
ted multiple sprites of both sequences. The costs for the binary mask
and the transformation parameters were fixed at 9.54kbit/s for “Ste-
fan” and 8.56kbit/s for “Biathlon”. In Figures 9 and 10 the overall
coding results for several combinations of coded sprite images and
coded foreground objects plus side information are depicted. It can
be observed that using multiple sprites yields much higher objective
quality at same bit-rates than applying single sprites, which is up to
2.5dB. Moreover, only the multiple sprite approach outperforms the
reference coding scheme by up to 1.3dB at 78kbit/s for “Stefan”
and more than 1.2dB at 60kbit/s for sequence “Biathlon”. Thus,
at bit-rates below 140kbit/s we achieve a coding gain for multiple
sprites over latest hybrid coders. Comparing rate-distortion values
to other sprite-based approaches is quite difficult since most works
do concentrate only on the coding of the sprite image and do not
code all objects, or if so, only code a small portion of the shot, even
for the well-known “Stefan” sequence. A subjective comparison pro-
ving the excellent performance of the multiple sprite coder is shown

I - 67

Fig. 6. Multiple sprites of sequence “Stefan”, top: frames 0 to 244,
bottom left: frames 245 to 261, bottom right: frames 262 to 299

Fig. 7. Multiple sprites of sequence “Biathlon”, top left: frames 0 to
9, top center: frames 10 to 22, top right: frames 23 to 46, bottom:
frames 47 to 199

(a) H.264 - 88.95kbit/s (b) OBVC - 88.3kbit/s

Fig. 8. Subjective quality comparision for frame 226 of “Stefan” for
(a) H.264/AVC and (b) multi-sprite OBVC (ctuout)

in Figure 8.

5. CONCLUSION

We have presented a new object-based approach using existing stan-
dard codecs fore object-based video coding (OBVC). To improve
coding efficiency we applied multiple sprites, which are constructed
upon a robust estimation of physical camera parameters. Thus, the
coding cost for the sprite images was minimized. For low bit-rates
the codec yields better performance in comparison to latest block-
based hybrid codecs. For further work we will improve the sprite re-
construction quality to improve the limited re-projection quality and
expand the segmentation method to apply temporal object tracking.

6. REFERENCES

[1] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra,
“Overview of the h.264/avc video coding standard,” IEEE Tran-

 22

 22.5

 23

 23.5

 24

 24.5

 25

 25.5

 26

 26.5

 27

 27.5

 40 60 80 100 120 140 160 180

P
S

N
R

 [d
B

]

Bit Rate [kbit/s]

Stefan 352x240, 30Hz, 295 frames, Temp. access at 0.5s

AVC utilizing hierarch. B-Frames
OBVC - Multi-Sprite coded at 13.00 kbps
OBVC - Multi-Sprite coded at 18.03 kbps
OBVC - Multi-Sprite coded at 24.52 kbps

OBVC - Single-Sprite coded at 22.70 kbps
OBVC - Single-Sprite coded at 30.38 kbps
OBVC - Single-Sprite coded at 40.88 kbps

Reconstruction without coding

Fig. 9. Coding results for multi- and single sprite approach, sequence
“Stefan”

 27

 28

 29

 30

 31

 32

 33

 34

 35

 36

 40 60 80 100 120 140

P
S

N
R

 [d
B

]

Bit Rate [kbit/s]

Biathlon 352x288, 30Hz, 195 frames, Temp. access at 0.5s

AVC utilizing hierarch. B-Frames
OBVC - Multi-Sprite coded at 14.78 kbps
OBVC - Multi-Sprite coded at 28.80 kbps
OBVC - Multi-Sprite coded at 38.96 kbps

OBVC - Single-Sprite coded at 10.88 kbps
OBVC - Single-Sprite coded at 15.24 kbps
OBVC - Single-Sprite coded at 21.48 kbps

Reconstruction without coding

Fig. 10. Coding results for multi- and single sprite approach, se-
quence “Biathlon”

sactions on Circuits and Systems for Video Technology, vol. 13,
no. 7, pp. 302–311, July 2003.

[2] H. Schwarz, D. Marpe, and T. Wiegand, “Analysis of hierarchi-
cal b pictures and mctf,” in IEEE Int. Conference on Multimedia
& Expo (ICME’06), Toronto, Canada, 2006.

[3] Y. Lu, W. Gao, and F. Wu, “Fast and robust sprite generation
for mpeg-4 video coding,” in IEEE Pacific Rim Conference on
Multimedia (PCM’01), Bejing, China, Oct. 2001.

[4] D. Farin and P. H. N. de With, “Enabling arbitrary rotational
camera motion using multisprites with minimum coding cost,”
IEEE Transactions on Circuits and Systems for Video Technolo-
gy, vol. 16, no. 4, pp. 492–506, April 2006.

[5] M. Kunter, A. Krutz, M. Mandal, and T. Sikora, “Optimal
multiple sprite generation based on physical camera parameter
estimation,” in Visual Communications and Image Processing
(VCIP’07), San Jose, USA, Jan. 2007.

[6] A. Krutz, M. Frater, M. Kunter, and T. Sikora, “Windowed
image registration for robust mosaicing of scenes with large
background occlusions,” in Int. Conf. on Image Processing
(ICIP06), Atlanta, USA, Oct. 2006.

I - 68

