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ABSTRACT

In this paper we propose novel algorithms for total variation (TV)
based image restoration and parameter estimation utilizing varia-
tional distribution approximations. By following the hierarchical
Bayesian framework, we simultaneously estimate the reconstructed
image and the unknown hyperparameters for both the image prior
and the image degradation noise. Our algorithms provide an approx-
imation to the posterior distributions of the unknowns so that both
the uncertainty of the estimates can be measured and different val-
ues from these distributions can be used for the estimates. We also
show that some of the current approaches to TV-based image restora-
tion are special cases of our variational framework. Experimental
results show that the proposed approaches provide competitive per-
formance without any assumptions about unknown hyperparameters
and clearly outperform existing methods when additional informa-
tion is included.

Index Terms— Image restoration, total variation, variational
methods, parameter estimation, Bayesian methods.

1. INTRODUCTION

The image degradation process is often represented by a linear model
as

y = Hx + n, (1)

where x, y, and n represent the original image, the observed image,
and the noise, respectively, all ordered lexicographically. The matrix
H represents the blurring matrix, which is assumed to be known.
It is also assumed that n is sampled from a zero-mean independent
Gaussian random process with variance β−1.

The image restoration problem is to find an estimate of x from
y and H using prior knowledge about n and x. The literature on
image restoration is rich (a review and classification of the major
approaches can be found for example in [1]).

Methods based on Bayesian formulations are of the most com-
monly used methods in the image restoration literature. Such meth-
ods introduce an image model on x which is used to incorporate prior
knowledge and to impose constraints on the image estimate, acting
as a regularizer in the estimation process. A number of different
prior models are introduced, such as, Simultaneous Autoregression
(SAR), Conditional Autoregression (CAR), or Total Variation (TV).
The prior models typically depend on a parameter which is related
to the global variance of the image. In this paper, we utilize a TV
function as the image prior in the estimation process.

Additionally, the observation model involves a parameter which
is related to the variance of the degradation noise. These parameters,

also called hyperparameters, determine the performance of the algo-
rithm to a great extent, and have to be determined carefully, or esti-
mated by the algorithm. To our knowledge, not much work has been
reported on the simultaneous estimation of the hyperparameters and
the image in TV-based image restoration. Rudin et al. [2] consider
the constrained minimization of the image prior and then proceed
to estimate both the image and the Lagrange multiplier associated
with the prior. Bertalmio el al. [3] make the Lagrange multiplier
region dependent. Bioucas-Dias et al. [4] using their majorization-
minimization approach [5] propose a Bayesian method to estimate
the original image and the hyperparameter of the image model as-
suming that an estimate of the noise variance is available.

In this paper we adopt a hierarchical Bayesian formulation (see,
for example, [6, 7]) to jointly estimate the image and the hyperpriors
using a TV image prior. A variational approach is utilized to derive
the distributions of both the image and the hyperparameters, which
allows us to derive different estimations for the unknown variables
and also to analyze the uncertainty of those estimates.

This paper is organized as follows. In Sec. 2 we present the
hierarchical Bayesian model. Section 3 describes the variational in-
ference methods and the derivation of the proposed methods. We
present the experimental results in Sec. 4 and conclude in Sec. 5.

2. BAYESIAN MODELING

Utilizing a hierarchical Bayesian model, the image and the observa-
tion noise are modeled in the first stage using some unknown hyper-
parameters, and the hyperprior distributions of the hyperparameters
are modeled in the second stage.

2.1. First stage: prior models on image and observation

Given the observation model in Eq. (1), the corresponding probabil-
ity distribution can be stated as

p(y|x, β) ∝ βN/2 exp

[
−β

2
‖ y −Hx ‖2

]
. (2)

We use the TV prior as the image model, given by

p(x) ∝ 1

ZTV(α)
exp [−αTV(x)] , (3)

where ZTV(α) is the partition function and

TV(x) =
∑

i

√
(Δh

i (x))2 + (Δv
i (x))2, (4)

where the operators Δh
i (x) and Δv

i (x) correspond to, respectively,
horizontal and vertical first order differences, at pixel i, that is, Δh

i (x) =
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xi − xl(i) and Δv
i (x) = xi − xa(i), where l(i) and a(i) denote the

nearest neighbors of i, to the left and above, respectively. We can
approximate the partition function ZTV(α) using∫

u

∫
v

exp
[
−α

√
u2 + v2

]
dudv = 2π/α2, (5)

as proposed in [5], to obtain

p(x) ∝ αN/2 exp [−αTV(x)] , (6)

where N is the size of the original image x.

2.2. Second stage: hyperprior on the hyperparameters

In this work we use flat improper hyperpriors on α and β, that is, we
utilize

p(α) ∝ const, p(β) ∝ const. (7)

Note that with this choice of the hyperpriors the observation y is
fully responsible for the estimation of the image and parameters α
and β.

Finally, combining the first and second stage of the problem
modeling we propose the following global distribution

p(α, β,x,y) = p(α)p(β)p(x|α)p(y|x, β)

∝ αN/2βN/2 exp [−αTV(x)] exp

[
−β

2
‖ y −Hx ‖2

]
. (8)

3. BAYESIAN INFERENCE AND VARIATIONAL
APPROXIMATION

The Bayesian paradigm dictates that inference on (α, β,x) should
be based on

p(α, β,x | y) =
p(α, β,x,y)

p(y)
. (9)

Since the distribution p(α, β,x | y) is difficult to evaluate,
we apply variational methods to approximate it by q(α, β,x) =
q(α, β)q(x).

The variational criterion used to find q(α, β,x) is the minimiza-
tion of the Kullback-Leibler divergence, given by

CKL(q(α, β,x) ‖ p(α, β,x|y))

=

∫
α

∫
β

∫
x

q(α, β,x) log

(
q(α, β,x)

p(α, β,x|y)

)
dαdβdx

=

∫
α

∫
β

∫
x

q(α, β,x) log

(
q(α, β,x)

p(α, β,x,y)

)
dαdβdx + const,

(10)

which is always non negative and equal to zero only when q(α, β,x) =
p(α, β,x|y).

Due to the form of the TV prior, it is difficult to evaluate the inte-
gral in Eq. (10). We therefore utilize a minorization of the TV prior.
Let us define, for α, x and any N−dimensional vector v ∈ (R+)N ,
with components vi, i = 1, . . . , N , the following functional

M(α,x,v) = exp

[
−α

2

∑
i

(Δh
i (x))2 + (Δv

i (x))2 + vi√
vi

]
(11)

Using the inequality in [5], for u ≥ 0 and v > 0

√
u ≤ √v +

1

2
√

v
(u− v), (12)

we have that

p(x|α) ≥ const · αN/2 · expM(α,x,v), (13)

which leads to the following lower bound of the joint probability
distribution

p(α, β,x,y) ≥ p(α)p(β)M(α,x,v)p(y|x, β) (14)

= F(α, β,x,v,y). (15)

Utilizing this lower bound, we obtain

∫
α

∫
β

∫
x

q(α, β,x) log

(
q(α, β,x)

p(α, β,x|y)

)
dαdβdx

≤
∫

α

∫
β

∫
x

q(α, β,x) log

(
q(α, β,x)

F(α, β,x,v,y)

)
dαdβdx (16)

The right-hand side of Eq. (16) is easier to evaluate than the left-
hand side. It can therefore be used in the following algorithm for
evaluating the approximating posteriors q(x) and q(α, β).

Algorithm 1 Posterior parameter and image distributions estima-
tion in TV restoration using q(α, β,x) = q(α, β)q(x).
Given q1(α, β), an initial estimate of the distribution q(α, β), and
v1 ∈ (R+)N ,
For k = 1, 2, . . . until a stopping criterion is met:

1. Find

qk(x) = arg min
q(x)

∫
x

∫
α

∫
β

qk(α, β)q(x)

× log

(
qk(α, β)q(x)

F(α, β,x,vk,y)

)
dαdβdx (17)

2. Find

vk+1 = arg min
v

∫
α

∫
β

∫
x

qk(α, β)qk(x)

× log

(
qk(α, β)qk(x)

F(α, β,x,v,y)

)
dαdβdx (18)

3. Find

qk+1(α, β) = arg min
q(α,β)

∫
α

∫
β

∫
x

q(α, β)qk(x)

× log

(
q(α, β)qk(x)

F(α, β,x,vk+1,y)

)
dαdβdx (19)

Set
q(α, β) = lim

k→∞
qk(α, β), q(x) = lim

k→∞
qk(x). (20)

In order to find q(x), we differentiate the integral on the right-
hand side of Eq. (17) with respect to q(x) and set it equal to zero to
obtain

q
k(x) ∝ expEqk(α,β)[ln F(α, β,x,vk)]. (21)

Therefore qk(x) is an N -dimensional Gaussian distribution with pa-
rameters

covqk(x)[x] =
(
Eqk(β)[β]HtH + Eqk(α)[α](Δh)

t
W (vk)(Δh)

+ Eqk(α)[α](Δv)tW (vk)(Δv)
)−1

= [Ck(vk)]−1, (22)
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Eqk(x)[x] = covqk(x)[x]Eqk(β)[β]Hty, (23)

where W (v) is the N ×N diagonal matrix of the form

W (v) = diag

(
1√
vk

i

)
, i = 1, . . . , N (24)

Similarly, we have from Eq. (18)

vk+1
i = Eqk(x)[(Δ

h
i (x))2 + (Δv

i (x))2], i = 1, . . . , N. (25)

where

Eqk(x)[(Δ
h
i (x))2 + (Δv

i (x))2] = (Δh
i (Eqk(x)[x]))2

+ ((Δv
i (Eqk(x)[x]))2 + Eqk(x)[(Δ

h
i (x− Eqk(x)[x]))2]

+ Eqk(x)[(Δ
v
i (x− Eqk(x)[x]))2] (26)

Finally we find qk+1(α, β) by differentiating the integral on the
right hand side of Eq. (19) with respect to q(α, β) and setting it equal
to zero to obtain

q
k+1(α, β) = q

k+1(α)q
k+1(β) (27)

where qk+1(α) is the gamma distribution given by

q
k+1(α) ∝ αN/2 exp

[
−α

∑
i

√
vk+1

i

]
(28)

and qk+1(β) is the gamma distribution given by

q
k+1(β) ∝ βN/2 exp

[
−β

Eqk(x) ‖ y −Hx ‖2
2

]
(29)

The mean and mode of these distributions are given by

Eqk+1(α)[α] =
N/2 + 1∑

i

√
vk+1

i

, Modeqk+1(α)[α] =
N/2∑

i

√
vk+1

i

(30)
and

Eqk+1(β)[β] =
N + 2

Eqk(x) ‖ y −Hx ‖2 , (31a)

Modeqk+1(β)[β] =
N

Eqk(x) ‖ y −Hx ‖2 . (31b)

Note that Eqk(x) ‖ y −Hx ‖2 in Eqs. (29)-(31b) can be stated
as

Eqk(x)

[‖ y −Hx ‖2] =‖ y −HEqk(x)[x] ‖2

+ trace
(

covqk(x)[x]HtH
)

. (32)

In this proposed algorithm for estimating the posterior distri-
bution of the image and the unknown parameters, no assumptions
were made about the posterior approximation. Alternatively, we can
assume q(x) being a degenerate distribution, that is, a distribution
which takes one value with probability one and the rest with prob-
ability zero. We propose next an algorithm where qk(x) takes the
value xk with probability one.

Algorithm 2 Posterior parameter and image distributions estima-
tion in TV restoration using q(α, β,x) = q(α, β)q(x) where q(x)
is a degenerate distribution.

Given q1(α, β), an initial estimate of the distribution q(α, β), and
v1 ∈ (R+)N ,
For k = 1, 2, . . . until a stopping criterion is met:

1. Calculate
xk = [Ck(vk)]−1Hty, (33)

2. Calculate

vk+1
i = (Δh

i (xk))2 + (Δv
i (xk))2], i = 1, . . . , N. (34)

3. Calculate

qk+1(α) ∝ αN/2 exp

[
−α

∑
i

√
vk+1

i

]
(35)

qk+1(β) ∝ βN/2 exp

[
−β
‖ y −Hxk ‖2

2

]
(36)

The mean and mode of these distributions are given by

Eqk+1(α)[α] =
N/2 + 1∑

i

√
vk+1

i

, Modeqk+1(α)[α] =
N/2∑

i

√
vk+1

i

(37)
and

Eqk+1(β)[β] =
N + 2

‖ y −Hxk ‖2 , (38a)

Modeqk+1(β)[β] =
N

‖ y −Hxk ‖2 . (38b)

The estimates of the image in Eqs. (23) and (33) are computed it-
eratively, with the use of a conjugate gradient or gradient descent al-
gorithm thus avoiding the inversion of Ck(vk). However, covqk(x)[x]
is explicitly needed to evaluate Eq. (32). We propose the approxima-
tion W (vk) ≈ z(vk)I, where

z(vk) =
1

N

∑
i

1√
vk

i

. (39)

We can therefore obtain a form of covqk(x)[x] that can be repre-
sented by a block circulant matrix with circulant blocks (BCCB),
whose inverse can be computed in the Fourier domain.

4. EXPERIMENTAL RESULTS
In this section we present experimental results obtained by the use
of the proposed algorithms on two images with two different degra-
dation functions, i.e., a Gaussian blur with variance 9 and a uni-
form blur of size 9x9. In all cases, white Gaussian noise is added
to the blurred images to obtain degraded images with blurred-signal-
to-noise (BSNR) ratios of 20, 30, and 40dB. We use ”Lena” and
”Cameraman” as our test images.

Table 1 shows the quantitative results corresponding to the ex-
periments, where ISNR is defined as 10 log10(‖ x − y ‖2 / ‖
x−x̂ ‖2), where x, y and x̂ are the original, observed, and estimated
images, respectively. Algorithms 1 and 2 are denoted by ALG1 and
ALG2, respectively, and BFO1 represents the method in [5] while
BFO2 represents the method in [4]. Note that both of these methods
are based on TV-priors, where BFO1 uses a hand-tuned empirical
value for the hyperparameters and BFO2 incorporates an adaptive
scheme to estimate the hyperparameter α. Both algorithms assume
that the noise variance is available. It is important to note that both

I - 99



(a) (b)

(c) (d)
Fig. 1. (a) Image degraded by a Gaussian shaped PSF with vari-
ance 9 and Gaussian noise of variance 0.16 (BSNR=40dB), (b) Re-
stored image using ALG1 (ISNR = 4.84dB), (c) Restored image us-
ing ALG2 (ISNR = 4.64dB), (d) Restored image using ALG1-True
(ISNR = 6.95dB).

BFO1 and BFO2 can be derived as special cases of our formulation.
The BFO1 method can be obtained by assuming both hyperparame-
ters are known, and BFO2 can be obtained by assuming β is known
and by replacing Eqk(α)[α] by Modeqk(α)[α] in Eq. (33).

It is clear from Table 1 that ALG1 and ALG2 both almost always
perform better than BFO2 although the latter assumes a known noise
variance whereas the proposed algorithms estimate this parameter
simultaneously with the image. The performance of the algorithms
is better than even BFO1 in Gaussian blur case. It is also clear that
both ALG1 and ALG2 perform better at restoring images blurred with
Gaussian PSFs.

The performance difference between ALG1 and ALG2 is very
small, and they give slightly lower values for ISNR than BFO1. This
is however expected, since BFO1 assumes knowledge of the noise
variance and picks a hand-tuned parameter α. To evaluate the per-
formance of the proposed methods in this case, we calculated the

hyperparameters α and β using α = N/2+1∑
i

√
v

org
i

and β = N+2
‖y−Hxorg‖2 ,

where vorg
i is obtained from the original image xorg, and run our algo-

rithms by keeping these parameters fixed as the image is estimated.
The corresponding ISNR values are shown in Table 1, denoted by
ALG1-True and ALG2-True. It is obvious that in this case the pro-
posed algorithms provide a superior performance over the rest of the
algorithms.

The restoration results of the Lena image in the case of Gaussian
blur with 40dB BSNR as well as the degraded version are shown
in Fig. (1). Considering that the parameters of both algorithms are
estimated automatically using the degraded observation without re-
quiring any prior knowledge about the noise, it can be stated that the
restored images are of high quality.

Table 1. ISNR values, and number of iterations obtained by the
proposed algorithm compared with other methods.

Cameraman with a 9x9 uniform blur Lena with a Gaussian blur of variance 9

BSNR Method ISNR (dB) iterations Method ISNR (dB) iterations

40dB BFO1 8.55 8 BFO1 4.72 20
BFO2 8.25 12 BFO2 4.50 19
ALG1 6.76 24 ALG1 4.84 10
ALG2 8.29 21 ALG2 4.64 16

ALG1-True 11.34 9 ALG1-True 6.95 3
ALG2-True 11.33 13 ALG2-True 6.95 4

30dB BFO1 5.68 10 BFO1 3.87 24
BFO2 4.65 14 BFO2 3.56 21
ALG1 5.41 19 ALG1 4.03 16
ALG2 4.39 17 ALG2 3.67 21

ALG1-True 8.26 5 ALG1-True 6.01 2
ALG2-True 8.26 6 ALG2-True 6.01 2

20dB BFO1 3.31 14 BFO1 3.02 20
BFO2 2.12 20 BFO2 2.47 22
ALG1 2.46 22 ALG1 3.06 23
ALG2 2.12 28 ALG2 2.58 34

ALG1-True 5.33 5 ALG1-True 5.07 2
ALG2-True 5.33 6 ALG2-True 5.07 2

5. CONCLUSIONS
In this paper we represented a novel TV-based image restoration
methodology which simultaneously estimates the reconstructed im-
age and the hyperparameters of the Bayesian formulation. We adopt
a variational approximation approach to estimate the posterior distri-
butions of the image and the hyperparameters, so that the uncertainty
of these parameters can be evaluated and different values from these
distributions can be used in the restoration process to obtain better
performance. We have provided two different algorithms that re-
sulted from this formulation, and have shown that their performance
is competitive to other TV-based methods which assume knowledge
about the image degradation process whereas our algorithms work
automatically without any assumptions. We have also shown that if
additional information about the image formation and degradation
processes is provided, the proposed algorithms provide superior per-
formance over the existing methods.
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