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ABSTRACT

In this paper, We propose an efficient compression method to encode
the geometry of 3D mesh sequences of objects sharing the same con-
nectivity. Our approach is based on the clustering of the input mesh
geometry into groups of vertices following the same affine motion.
The proposed algorithm uses a scan-based temporal wavelet filtering
geometrically compensated. The wavelet coefficients are encoded
by an efficient coding scheme that includes a bit allocation process,
whereas the displacement vectors are lossless entropy encoded. Sim-
ulation results provides good compression performances compared
to some state of the art coders.

Index Terms— Scan-based compression, mesh sequences, motion-
based clustering, geometry compensation, temporal wavelet, lifting
scheme.

1. INTRODUCTION

3D animated objects are used in a variety of fields, like computer
games, multimedia, medical imaging,... They are often represented
by a sequence, stored and transmitted as series of consecutive trian-
gular meshes generally called frames, where each frame is defined
by the location of the vertices (geometry) and by triangles (connec-
tivity). In general, the meshes are irregular, and the connectivity of
the meshes may also evolve with time. In this paper, we restrict our
attention to a class of animation meshes sharing the same connectiv-
ity at any frame of the sequence.

Most of the compression methods of the literature, proposed for
3D animations, exploit the affine transformations of different seg-
ments of the meshes [1, 2, 3]. Also, some approaches proposed to
predict the vertex displacements along the sequence and then to en-
code the residual errors [4, 5]. Recently, several more complex pre-
diction techniques have been proposed. In [6, 7] for instance, the
authors exploited the temporal coherence by clustering vertices with
similar affine transforms between successive frames. In [8], the au-
thors used the mesh connectivity to determine the order of compres-
sion of vertex locations. In parallel, Alexa and Müller [9] proposed a
coding scheme based on the principal component analysis (PCA) to
represent a mesh sequence with only a small number of basis func-
tions. Karni and Gotsman improved this method by further exploit-
ing the temporal coherence and finally encode the PCA coefficients
with a second-order predictive coding called LPC [10]. The method
of [9] has been also improved in [11], where the authors proposed
to cluster vertices before using PCA. Briceno et al. presented an
original approach in [12]. The technique is to project each frame
onto a 2D image, and then to encode the resulting sequence of ”2D
images” with some well-known video techniques. Besides, several
methods based on wavelets have been proposed. In [13], the authors

proposed to exploit the temporal coherence of the geometry com-
ponents by applying a B-spline wavelet transform on the successive
vertex positions. Recently, a coder based on temporal wavelet fil-
tering implemented in lifting scheme has been proposed [14]. In
[15], Guskov and Khodakovsky proposed to exploit the paramet-
ric coherence of some specific animations by combining a spatial
multiresolution analysis and a predictive coding scheme based on
a I-frames/P-frames approach (similar to some video compression
methods). In parallel, J.H. Yang et al. also proposed a wavelet-based
algorithm, but for sequences of irregular meshes with changing con-
nectivity [16]. Finally, in [17] Mamou and al. recently proposed a
novel approach for 3D mesh compression, based on a skinning ani-
mation technique. Their method is based on a piecewise affine pre-
dictor coupled with a skinning model and a DCT representation of
the residuals errors. In this paper, we propose a compression scheme
based on a temporal scan-based discrete wavelet transform (DWT).
It includes motion-based clustering of the mesh sequence and a ge-
ometrically compensated DWT (see figure 1). Similarly to several
techniques, we propose an efficient way to compress animated se-
quences by considering the sequence as geometric deformations of
the geometry of a key frame.

The rest of this paper is organized as follows. Section 2 deals
with the motion-based mesh clustering, the scan-based processing
and the geometry compensation approach. Section 3 presents the
proposed geometry compensated DWT. In section 4 experimental
results are given and compared to some state of the art methods. We
finally conclude and propose future works in section 5.

2. MOTION-BASED MESH CLUSTERING AND
GEOMETRY COMPENSATION

2.1. Motion-based mesh clustering

In this paper, we propose an approach to construct a partition for
each connex component of the 3D mesh of the sequence, based on
the motion between consecutive frames. This approach consists in
constructing a partition of the vertices according to the motion. In
other words, vertices with same motion belong to the same cluster
of the partition. The number of clusters in the partition depends
completely on the motion nature between the two frames. Let us
introduce some notations.
Let F be the set composed by the T frames of the mesh sequence,
F is defined by:

F = {f1, f2, ..., ft, ...fT }. (1)
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Fig. 1. General structure of the proposed compression algorithm.

Let us also defined Vt the set of V vertices of each frame t of the
sequence by1:

Vt = {v1
t , v2

t , ..., vi
t, ..., v

V
t }, ∀t, (2)

and Vi
the set of neighbor vertices of vi

t (which belong to the same

connex component). The set Vi
is identical for all frame t of the

sequence (with fixed connectivity) and is written as:

Vi
= {(vi

t)
k}k=1,...,K , ∀t, (3)

with K the number of the neighbor vertices of vi
t, such as K ≤ V .

Finally, the partition for each frame t is denoted by:

Ct = {C1
t , C2

t , ..., Cn
t , ..., CN

t }, (4)

with N being the number of clusters in the frame t of the sequence,
which depends on the motion between the frame t and the frame
t − 1. Let us suppose now that the vertices i at times t and t − 1 are
linked by the following relation:

vi
t = Mvi

t × vi
t−1, ∀ vi

t−1 ∈ Vt−1 and vi
t ∈ Vt, (5)

where Mvi

t is an affine transform matrix which transforms the ver-
tex vi, given in homogeneous coordinates2, from the frame t − 1
to the frame t. It is of size (4 x 4) and it contains 12 coefficients
representing the motion (rotation, translation and scaling):

Mvi
t =

�
�

[R, S]3×3 [Tr]3×1

0 0 0 1

�
� (6)

where the matrix [R, S]3×3 contains the rotation (R) and scaling (S)
parameters, and [Tr]3×1 is the translation vector. In order to find the
matrix Mvi

t , we need 4 vertices. For this purpose, we choose the ver-
tex vi

t ∈ Vt and 3 vertices (vi
t)

q chosen randomly among the set of
the first order neighborhood vertices of vi

t. We choose the first order
neighborhood in order to have a precise estimation of the motion.

Let us denote by Qvi

t the 4×4 matrix containing the 4 neighbor ver-
tices given in homogeneous coordinates. This matrix can be written
as:

Qvi

t =
�

vi
t (vi

t)
1 (vi

t)
2 (vi

t)
3
�

where vi
t and (vi

t)
q are to be column vectors of size (4 × 1) (homo-

geneous coordinates). In that way, the equation (5) can be rewritten
as follows:

Qvi

t = Mvi
t ×Qvi

t−1 (7)

1Since the connectivity remains the same for all the frames of the se-
quence, the number V is constant whatever t.

2A vertex v given in homogeneous coordinates is written as vt =
(x, y, z, 1).

Or equivalently to:

Mvi
t = Qvi

t × (Qvi

t−1)
−1

(8)

In order to solve the equation (7), and find an estimation of the matrix

Mvi
t , we introduce the matrix Pvi

t of size 4 × (Q + 1), where Q is
the number of the first order neighborhood vertices of vi

t belonging

to Vi
, such that Q ≤ K ≤ V . So, Pvi

t contains the vertex vi
t and

all its first order neighborhood vertices. It is given by (with vertex
expressed in homogeneous coordinates):

Pvi

t =
�

vi
t (vi

t)
1 ... (vi

t)
q ... (vi

t)
Q
�

(9)

where vi
t and (vi

t)
q are column vectors of size (4 × 1).

The transformation which is solution of the equation (7), corresponds
to the matrix Mvi

t = Mvi
t
∗

minimizing among all the possible
neighbors (vi

t)
q , q from 1 to Q, chosen randomly among the first

order neighborhood vertices of vi
t, the following formula:

‖Pvi

t − Mvi
t · Pvi

t−1‖2
(10)

Once the affine transform M
v∗

i
t associated to the vertex vi

t is
found, the cluster Cn

t ∈ Ct of the frame t, represented by the vertex
vi

t, will contain the vertex vi
t and all of its neighbor vertices (vi

t)
k

among Vi
which verify the following equation:

‖Mv∗
i

t · (vi
t−1)

k − (vi
t)

k‖2 < ε, (11)

with ε a threshold (chosen empirically in our experiments). A cluster
Cn

t can be written as:

Cn
t = {(vj

t )
n}j=1,...,V ′ (12)

where the quantity V ′ (V ′ ≤ K ≤ V ) is the number of vertices in
the cluster Cn

t which verify the equation (11). The partition verifies
the following properties:

∪nCn
t = ft and Cn

t ∩ Cm
t = ∅, ∀m, n (13)

This process is repeated for all the vertex vl
t of the frame ft (l 	= i

and vl
t /∈ Cn

t ).

2.2. Scan-based processing

In the proposed approach, the sequence is processed on the fly (also
called scan-based processing). To this purpose, the sequence is de-
composed into groups of frames (GOF) where each GOF is pro-
cessed and computed independently. In the rest of the paper, we
consider that a GOF is composed by T frames. To simplify, the
clustering process is done for the first two frames of each GOF of
the sequence and is maintained constant in the whole GOF. Then,
the number N of clusters per frame remains the same in a current
GOF. As an example, the clustering of the first frame of the SNAKE

sequence is shown in the figure 2, for N = 21 clusters.
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Fig. 2. Clustering of the SNAKE sequence, N = 21 clusters.

2.3. Geometry compensation

The geometry compensation approach, denoted in the rest of paper
by GC, consists in displacing all the frames of a given GOF on the
key frame (here first frame) of the GOF, while keeping this key frame
unchanged. Once the set of clusters (Cn

t )n∈{1....N} is computed, the
proposed GC approach is given as follows.
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njv )( 3

n
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t Cv )( nj
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Fig. 3. Estimation of the geometric displacement vectors. To com-
pute the scan-based wavelet transform (Section 3) and avoid bound-
ary effects, we need to use the first frame of the next GOF, which is
also displaced on the first frame of the current GOF.

The proposed idea consists to compute one average displacement
vector per cluster Cn

t , as it is shown in the figure 3. An average
displacement vector corresponds to the translation motion computed
for each frame and for each cluster according to the first frame of the
GOF. It can be written as:

V̄
Cn

t
1→t =

1

V ′
�

v
j
t∈Cn

t

V
v

j
t

1→t, where V
v

j
t

1→t = vj
t − vj

1, (14)

for j = 1, 2, ..., V ′, n = 1, 2, ..., N and t = 2, 3, ..., T.
Once the suitable displacement vectors of the geometry are com-
puted for each cluster Cn

t of each frame t, we can apply the GC on
this GOF. Let us denote the new compensated cluster by:

Ĉn
t = {(v̂j

t )
n}j=1,...,V ′ (15)

Each compensated vertex v̂j
t ∈ Ĉn

t is computed as follows:

v̂j
t = vj

t − V̄
Cn

t
1→t, (16)

for j = 1, 2, ..., V ′, n = 1, 2, ..., N and t = 2, 3, ..., T.
The temporal wavelet transform is then done on the compensated
sequence as explained in the following section 3.

3. GEOMETRY COMPENSATED DWT

A practical problem in temporal wavelet transform implementation
is related to memory requirements of time filters. Usually, wavelet
transform is implemented by loading all the data in memory and

Sequence F V T CC N

DOLPHIN 64 6179 12337 1 89

CHICKEN 384 2916 5454 37 37

Table 1. Considered features of the used sequences.

then performing filtering. In the case of temporal filtering of mesh
sequences, this would require a huge memory size and moreover
could imply an encoding delay as long as the sequence duration it-
self. As said in section 2.2, a simple solution to the temporal filtering
problem is to crop the input sequence in several short subsequences
called GOF. Once each GOF of the original sequence is geometry
compensated, we can apply the scan-based wavelet transform on the
compensated sequence. The figure 4 shows the principle of the scan-
based filtering on the FACE sequence for a GOF of 4 frames, by using
the lifting scheme (2, 0) as proposed in [14]. As we mentioned in
section 2.3, in order to solve the boundary problem, we need to con-
sider the first frame of the next GOF to compute the filtering of the
last frame of the current GOF.

The hight frequency (HF) details and the low frequency (LF)
sequence of each GOF are encoded with an efficient bit allocation-
based coder [14]. As the connectivity remains the same for all frames
of the mesh sequence, we simply encode the connectivity of the first
frame with the efficient coder of Touma and Gotsman [18].

f1̂ f2̂ f3̂ f4̂ f5̂ f6̂ f7̂ f9̂

GOF 1 GOF 2
f8̂

GOF 3

ĤF1
ĤF3ĤF2

ĤF4

LF̂1 LF̂2 LF̂3 LF̂4

Fig. 4. Example of a scan-based wavelet transform decomposition
(lifting scheme (2, 0) - 1 level decomposition)

4. SIMULATION RESULTS

In order to evaluate the efficiency of the proposed compression scheme,
we have tested its performances on different sequences. Here, we
present two animation sequences: DOLPHIN and CHICKEN sequences,
with different features presented in Table 1. In this table, F corre-
sponds to the number of frames, V to the number of vertices per
frame, T to the number of triangles per frame, CC to the number of
the connex components of the original mesh, and N to the average
number of clusters obtained for all the GOFs of the sequence. To
evaluate the quality between the original sequences and the recon-
structed ones, we use the metric error called KG error, introduced
by Karni and Gotsman in [10].
Figure 5 and 6 show the curves KG Error/bitrate for the two different
sequences, using the proposed coder for different GOF sizes. The
results are compared to the Wavelet-based coder proposed in [14]
(without clustering and without GC). Also, we compare the coding
performances of the proposed coder with the PCA-based coder of
[9], the CPCA- based coder of [11] and the Skinning-based coder
of [17]. We choose different GOF sizes of 8 frames, 64 frames
(DOLPHIN ) and 384 frames (CHICKEN). The bitrate is given in
bits per vertex per frame.
For both of the figures 5 and 6, we observe that the best results
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are given by the Skinning-based coder of [17]. However, the three
cases of the proposed coder provides best results than the PCA-based
coder. Also, the proposed coder using the lifting scheme (4, 2) is
better than the CPCA-based coder of [11] (at high bitrates) and the
Wavelet- based coder of [14].
Nevertheless, the proposed coder using scan-based processing for
GOF of size 8 frames is interesting when huge sequences must be
processed. Indeed, a large sequence requires a huge memory and
moreover could imply an encoding delay as long as the sequence
duration itself.

5. CONCLUSIONS AND FUTURE WORKS

In this paper, we have introduced motion-based clustering for mesh
sequences with fixed connectivity. This compression scheme uses
a scan-based wavelet transform geometrically compensated which
requires low memory. Experimentally, we have shown that using
motion estimation/compensation before the lifting steps, reduces the
energy of the wavelet coefficients and improves the efficiency of the
coder when small GOF size are used. First experimental results are
promising. In our current works, we are improving the GC and the
clustering approach.
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