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ABSTRACT

In this paper, the block-coordinate Gauss-Newton/regression
method is proposed to jointly optimize the spatial registra-
tion and the intensity compensation. Here, the intensity com-
pensation is conducted constructing a polynomial regression
model, which enables the detection of occluded regions as
outliers. Based on the block-coordinate method, we separate
the parameter update into two steps for registration and com-
pensation, respectively. Hence, we can perform a joint opti-
mization with low computational complexities, and can apply
an appropriate scaling technique to the parameters to be up-
dated for a stable and fast convergence of the algorithm. Ex-
cluding outliers, we can successfully align images compen-
sating the intensity differences.

Index Terms— Intensity compensation, regression model,
outlier, block-coordinate optimization.

1. INTRODUCTION

Research on the registration of images has been significantly
conducted in various fields, such as computer vision and med-
ical imaging. Superposing the multiple captured images into
a single image can increase the dynamic range of the pixel
levels and improve the signal-to-noise ratio if all images are
properly aligned and exposed. When we align differently ex-
posed images, we may use a feature-based registration tech-
nique, of which performance is less sensitive to the exposure
difference. We can then apply a global photometric registra-
tion [2]. However, to reduce the effect of the different expo-
sure on the correlation-based registration, we should account
or compensate the exposure difference during registration. To
perform an intensity compensation, two images should con-
tain the same scene and be aligned with respect to the over-
lapped scene. For an accurate registration, contradictively, the
images should have the same exposure or illumination con-
ditions. Therefore, devising a joint optimization technique
for the spatial registration and exposure compensation is re-
quired.

Mann [4] conducted a joint registration based on the com-
parametric exposure compensation with the affine model. He
used the homomorphic warp for the registration, and derived
a combined linear equation of the affine function and the warp
for a joint optimization. Candocia [1] performed a continuous
piecewise-linear fitting to obtain a preferred comparametric
function.
In this paper, a joint optimization method, block-coordinate

Gauss-Newton/regression method is proposed, where the in-
tensity compensation is conducted constructing a polynomial
regression model. Based on the block-coordinate method, we
update the parameters for registration and intensity compen-
sation sequentially in two separated steps. We can perform a
joint optimization with low computational complexities, and
can apply an appropriate scaling technique to the parameters
to be updated for stable and fast convergence of the algo-
rithm. Furthermore, outliers are detected based on the regres-
sion analysis to align images that include occluded parts.

2. INTENSITY COMPENSATION

For an intensity compensation problem, a polynomial regres-
sion model is used. To deal with the occlusion problem, we
exclude the outliers, which are detected based on a measure
of influence and the studentized residuals.

2.1. Polynomial Regression Model

Let U1, . . . , Um and V1, . . . , Vm are identically distributed
random variables representing the reference and input im-
ages, respectively. Consider a polynomial η(v; q) := q0 +
· · · + qt−1v

t−1 + qtv
t, for v ∈ R, where a vector q :=

(q0, . . . , qt) ∈ R
t+1 is a parameter vector. The polynomial

regression model [5, p. 181] for the intensity compensation is
given by

Ui = η(Vi; q∗) + εi, for i = 1, . . . , m. (1)

Here, we impose the Gauss-Markov conditions [5, p. 35] on
the random variables εi, i.e., E{εi} = 0, E{ε2

i } = σ, and
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E{εiεj} = 0 when i �= j, for i, j = 1, . . . ,m1. By minimiz-
ing the empirical error: ρm(η) := m−1

∑m
i=1[η(Vi; q)−Ui]2,

with respect to q, we can obtain a unbiased estimator q∗ for q
[5, p. 30,(2.9)]. We can then compensate the brightness of the
input image using an intensity compensation function η(·; q).

2.2. Outlier Detection

We employ the studentized residuals, RSTUDENT and the
measure of influence, DFFITSi [5, ch. 8] to detect the outliers,
which distort the intensity compensation curve and eventually
cause a critical error in the registration. To measure the influ-
ence of each sample to the fitting, we calculate DFFITSi and
compare it with a threshold of 2 [(t + 1)/(m − t − 1)]1/2. We
also compare RSTUDENT values to a predetermined thresh-
old. The threshold is set as 2 since the RSTUDENT has a
t-distribution under a normality assumption. If either the ab-
solute value of DFFITSi or the RSTUDENT value is larger
than the given threshold, then we regard the corresponding
sample as a ‘possible outlier’. If the number of outliers is sig-
nificant, than we repeat the regression excluding the possible
outliers for a better fitting. Next step is to refine the possi-
ble outliers into the final outliers. Supposing that the outliers
form an occlusion region, we remove isolated outliers by us-
ing a morphological filter. The proposed intensity compensa-
tion is summarized as follows:

Intensity Compensation Excluding Outliers
1) Perform regression.
2) Possible outliers: |DFFITSi| > 2 [(t + 1)/(m − t − 1)]1/2

or RSTUDENT > 2.
3) Excluding the possible outliers, repeat Steps 1) and 2).
4) Morphological operations, erosion and then dilation,
to decide the final outliers.

5) Rerun the regression excluding the final outliers.

In the proposed intensity compensation algorithm, Steps
1) and 2) are applied two times when the number of outliers
is significant. From numerical experiments, we found that
more repetition is required for a further accurate detection of
outliers depending on images.

3. JOINT REGISTRATION AND COMPENSATION

In this section, a joint optimization problem of the spatial reg-
istration and the intensity compensation is considered based
on the Gauss-Newton method.
For the description of the spatial registration, we repre-

sent the pixel values at a location x ∈ R
2 as U(x) and V (x),

for the reference and input images, respectively. Note that
this description on images is more convenient than the Ui

and Vi case of the previous section. Let a map φ(x; p) =
1A special case of polynomials for t = 1 is the affine function, which is

usually used to correct brightness differences [2].

(φx, φy) ∈ R
2 denote the warp for given x ∈ R

2, where
p := (p1, . . . , ps) ∈ R

s is a vector of s parameters. The map
φ takes a location x in the coordinate frame of the template
image T and maps it to the sub-pixel location φ(x; p) in the
coordinate frame of the input image V . Here, the template im-
age T is a part of the reference image U and has m0 (≤ m)
pixels. We suppose that, within the relationship of a warp, T
and a part of V have the same scene. The homomorphic warp
with s = 8 is usually used.
In order to jointly optimize the spatial registration and the

intensity compensation, we consider the following empirical
error:

δ(β) :=
1

m0

∑
x

[
η
(
V (φ(x; p)); q

)− T (x)
]2

, (2)

where β ∈ R
s+t+1 is a parameter vector composed of p and

q as β := (p1, · · · , ps, q0, · · · , qt), and the summation is over
all pixels in T . To reach a solution set Γ := {β : ∇δ(β) =
0}, we may use the steepest descent method [3].
Since δ is a sum of squares of arbitrary functions, the

Gauss-Newton method [5, p. 299] can efficiently minimize δ
without calculating the Hessian matrix. Based on this method,
Mann [4] considered an affine function with the homomor-
phic warp. In this section, the current joint optimization meth-
ods, which are based on the Gauss-Newton method, are ex-
tended to further generalized mapsφ and η. Letting g(x; β) :=
η
(
V (φ(x; p)); q

) − T (x), δ can be rewritten by δ(β) =
m−1

0

∑
x[g(x; β)]2. Let ∇g(x; β) denote the gradient of g

with respect to β as a row vector given by

∇g(x; β) :=
(

∂g

∂p1
· · · ∂g

∂ps

∂g

∂q0
· · · ∂g

∂qt

)
. (3)

For small ‖β − β(k)‖, we have an approximation from the
Taylor series as

g(x; β) ≈ g(x; β(k)) + ∇g(x; β(k))(β − β(k)).

Hence, a subsequent guess β(k+1) for the parameter vector is
then obtained by the recurrence relation:

β(k+1) = β(k) − J(β(k))−1
∑
x

∇g(x; β(k))�g(x; β(k)),

(4)
where J(β) :=

∑
x ∇g(x; β)�∇g(x; β) is an (s + t + 1)×

(s + t + 1) matrix, and � denotes the transpose of matrices.
Before entering the main iteration, a template T is extracted
from U with an initial warp. To set a template, a center part
of V is first selected and then find the corresponding part of
U using a simple translation-based alignment. We use these
corresponding part and the translation parameters for setting
the template T and an initial warp parameter p(0), respec-
tively. Here, the initial parameter for the intensity compen-
sation is given by q(0) = (0, 1, 0, . . . , 0), which implies an
affine function. We call the joint method, which is based on
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(4), the Gauss-Newton method in this paper.

Gauss-Newton (GN)
0) Set a constant ε > 0 and a template T . Letting k = 0,
choose an initial φ and η with β(0).

1) Compute β(k+1) from (4).
2) If ‖δ(β(k+1)) − δ(β(k))‖ < ε, then stop.
Otherwise, k ← k + 1 and goto Step 1).

In (4), the parameter vectors p and q are simultaneously
updated. Instead of such an update, we can derive a closed
form of update on p as a function of an optimal q. Based on
this notion, Candocia [1] derived an update on p as a function
of q that constructs a continuous piecewise-linear fitting for a
better exposure compensation. It is clear that such a deriva-
tion is more difficult than the joint update case of (4). If we
can separate the registration and intensity compensation parts
in the joint optimization, then we can significantly simplify
the optimization problem. In the following section, we will
do such a separation to develop an efficient joint optimization
scheme.

4. BLOCK-COORDINATE METHOD FOR JOINT
OPTIMIZATION

The block-coordinate method [3] is based on decomposing
the parameters into several blocks and producing optimiza-
tion steps in the respective block subspaces in a sequential
manner. Even though there are possibilities of slow conver-
gency and local minimum problems, complicate joint opti-
mizations can be simplified, and appropriate operations, such
as scaling and preconditioning, can be applied depending on
the parameters so as to obtain stable solutions. Based on the
block-coordinate method, we propose dividing the parame-
ters of β into two blocks for the spatial registration p and the
intensity compensation q, respectively.

4.1. Block Coordinate Methods

We now describe the block-coordinate method for the Gauss-
Newton case as follows. Let the gradients ∇1g(x; β) and
∇2g(x; β) denote row vectors as (∂g/∂p1 · · · ∂g/∂ps) and
(∂g/∂q0 · · · ∂g/∂qt), respectively. The first phase, which is
for updating the registration parameters, is then given by

p(k+1) = p(k) − J1(β(k))−1
∑
x

∇1g(x; β(k))�g(x; β(k)),

(5)
and the second phase, which is for updating the compensation
parameters, is given by

q(k+1) = q(k) − J2(γ(k))−1
∑
x

∇2g(x; γ(k))�g(x; γ(k)),

(6)

where J1(β) :=
∑

x ∇1g(x; β)�∇1g(x; β) and J2(β) :=∑
x ∇2g(x; β)�∇2g(x; β). In (6), an intermediate parame-

ter vector γ(k) ∈ R
s+t+1 is defined as

γ(k) := (p(k+1)
1 , · · · , p(k+1)

s , q
(k)
0 , · · · , q

(k)
t ).

The block-coordinate method is now summarized as follows:

Block-Coordinate Gauss-Newton (BCGN)
0) Set a constant ε > 0 and a template T . Letting k = 0,
choose an initial φ and η with β(0).

1) Registration: Compute p(k+1) from (5).
2) Compensation: Compute q(k+1) from (6).
3) If ‖δ(β(k+1)) − δ(β(k))‖ < ε, then stop.
Otherwise, k ← k + 1 and goto Step 1).

The Gauss-Newton update of (4) is divided into two steps,
Steps 1) and 2) in BCGN. Note that we can perform sepa-
rate matrix inverses for p and q, respectively. Hence, we
can easily apply an appropriate scaling for good inversions
depending on the parameter properties. On the other hand
in the inverse for (4), we should deliberate over combining
two different parameter vectors p and q for successful matrix
inversions. Note that we can employ different updates espe-
cially for the compensation step instead of the Gauss-Newton
update (6). In the following section, such a notion will be
discussed in a frame work of regression analysis.

4.2. Block-Coordinate Gauss-Newton/RegressionMethod

In the following algorithm, we use the regression model of
Section 2.1 instead of the Gauss-Newton method of (6) to
update the compensation parameter vector q. The proposed
algorithm is now summarized as follows:

Block-Coordinate Gauss-Newton/Regression (BCGNR)
0) Set a constant ε > 0 and a template T . Letting k = 0,
choose an initial φ with p(0).

1) Registration (Gauss-Newton): Compute p(k+1) from (5).
2) Compensation (regression):

q(k+1) = min−1
q δ

(
(p(k+1)

1 , . . . , p
(k+1)
s , q0, . . . , qt)

)
.

3) If ‖δ(β(k+1)) − δ(β(k))‖ < ε, then stop.
Otherwise, k ← k + 1 and goto Step 1).

The first phase is searching for an update p(k+1) that mini-
mizes δ(β) for fixed q(k). The second phase is then searching
for a map η with q(k+1) that minimizes δ for a fixed p(k+1).
Consequently the compensation-registration error δ of (2) de-
creases to a limit. The block-coordinate method, which is
based on the steepest descent method, can reach a limit that
belongs to the solution set Γ [3, p. 228].5. NUMERICAL RESULTS

We now numerically compare GN with the block-coordinate
methods, BCGN and BCGNR. A line search step is consid-
ered in the Gauss-Newton updates to alleviate the effect from
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Fig. 1. Comparison of proposed BCGN and BCGNR with
GN. (a) Error in decibel with respect to iteration (t = 5). (b)
Error in decibel with respect to the polynomial order.

Fig. 2. Mosaicked image based on BCGNR.

the quadratic approximation error [3, p. 226]. Furthermore,
for the matrix inversions, such as J(β)−1, an appropriate
scaling scheme is applied to the data to be fitted to poly-
nomials. Several image pairs are tested for the registration,
where the size of the image is given by 320 × 240 pixels
with 8 b/pixel. In each image pair, the images have differ-
ent exposure settings and are related by the homomorphic
warp. The empirical error δ(β) with respect to the iteration
is shown in Fig. 1(a). Here, we can notice that the block-
coordinate methods, BCGN and BCGNR, show comparable
performances to the GN case and a faster convergence prop-
erty. Furthermore, from Fig. 1(b), especially BCGNR shows
a stable performance with respect to the polynomial order for
some bad conditions compared to the GN and BCGN cases.
Therefore, besides reducing the computational complexity,
we can obtain a stable solution if we using BCGNR. A panorama
image is constructed in Fig. 2 based on BCGNR using 5 im-
ages. In Fig. 3(a) is a mosaicked image based on BCGNR
excluding outliers as shown in Section 2.1. This result shows
a good aligned result compared to the conventional method
that does not consider the outlier problem.

6. CONCLUSION

In this paper, we conducted a joint optimization of the spa-
tial registration and the intensity compensation based on the
block-coordinate Gauss-Newton/regression method. The pro-
posed algorithm shows a comparable result with the conven-

(a)

(b)
Fig. 3. Mosaicked images. (a) Conventional registration with
BCGNR. (b) BCGNR excluding outliers.

tional joint optimization approaches, and further provides a
stable and fast result. By excluding outliers, which are de-
tected based on RSTUDENT and DFFITSi, we can success-
fully align the images having occuluded parts.
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