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ABSTRACT

Local contrast enhancement (LCE) gives a more lively look to an

image or video. With a larger difference of a pixel’s luma value

from its local mean, the eye needs less time to adjust to that lo-

cal region for a better contrast sensitivity. Since the human eye

is trained and conditioned to recognize a natural looking face,

the faces in a locally enhanced image may look unnatural even

though other parts of the enhanced image is visually more at-

tractive than the original image. To solve this problem, a low-

complexity skin-aware local contrast enhancement algorithm is

proposed. The proposed Skin-Aware Local contraSt enhAnce-

ment (SALSA) algorithm avoids creating false edges. Exper-

iment results show that SALSA produces natural looking face

and non-facial skin regions in the locally enhanced image.

Index Terms— Image enhancement, skin, video signal pro-

cessing

1. INTRODUCTION

Contrast enhancement techniques are widely used to increase the

visual image quality. Global contrast enhancement (GCE) tech-

niques remedy problems that manifest themselves in a global

fashion such as excessive/poor lightning conditions in the source

environment. GCE algorithms enhance the image using a single

mapping derived from its histogram and maps the original dy-

namic range to a bigger dynamic range. On the other hand, local

contrast enhancement tries to enhance the visibility of local de-

tails in the image by amplifying the difference of a pixel’s luma

value from its local mean. Locally enhanced images look more

attractive than the originals because with higher local contrast

the human eye needs less amount of time to adjust to the local

mean of the luminance [1].

A local contrast enhancement method that uses an adaptive

first-order recursive (YENI) filter to find the local mean [2] and

amplifies the deviations from that local mean is used. The YENI

filter is a low-pass filter with very low computational and mem-

ory requirements that are especially tailored for real-time appli-

cations. The first-order delay coefficient is spatially adapted to

preserve edges while smoothing out the details on the objects.

Enhancement is done by amplifying the detail image (i.e. differ-

ence of the original image with the low-pass filtered image) and

adding it back to the low-pass filtered image. Since the YENI

filter is essentially an edge preserving low-pass filter, the detail

image does not have large energy components around the edges

and over/under shooting is successfully avoided.

Human intelligence is highly trained to recognize human

faces and skin. Starting from the early infancy phases, humans

learn to recognize other people with their faces [3], and com-

municate indescribable feelings and thoughts with simple facial

mimics. As Cicero said, ”Everything is in the face”. Hence,

special care must be taken for face and skin regions of an im-

age before displaying. Faces in local contrast enhanced images

may sometimes look unnatural although other regions look vi-

sually more attractive than the original. There is a clear need

for detecting skin and non-skin regions and applying a lighter

level of local contrast enhancement to skin regions, if not some

smoothing.

Pixel-based skin detection algorithms utilize the fact that

skin colors are clustered in the color space [4–6]. Although there

are small variations with respect to race and illumination condi-

tions, skin color lies inside a definite shaped color space region

(i.e. skin locus) [7]. Variations on the skin color due to race

and lightning conditions are explained by intensity variations in

the chrominance components. Therefore, color space based skin

color detection methods are robust to lightning conditions. An-

other reason to discard the luminance component is to decrease

the computational complexity through dimensionality reduction.

Skin color modeling based skin detection methods have 90%

true positive, and 20% false positive rate on average depending

on the model and (to some extent) the color space used [8]. Since

our goal is to discriminate skin pixels for a lighter level of en-

hancement, the true positives compared to the false positives are

given more importance. To increase the performance of skin de-

tection algorithms, more information is needed. One such infor-

mation is the skin color homogeneity based on the assumption

that skin regions in general consist of smooth skin patches. This

information is especially useful in nudity detection [9]. With the

help of the homogeneity assumption true positive and false pos-

itive rates can be improved moderately (e.g. to 96%, and 4.5%

respectively [6]).

In this paper, SALSA: a low-complexity human skin aware

local contrast enhancement method is proposed. SALSA utilizes

the likelihood of a pixel to be a skin pixel in order to modulate

the amplification gain of the detail image for local contrast en-

hancement. The skin color distribution is modeled with a Gaus-

sian distribution on the YCbCr color space. Contrary to pixel-

based skin detection algorithms that utilize thresholds, a soft dis-

crimination between skin and non-skin pixels by using the skin

likelihood is used. This way, unwanted false edges caused by

false classification is prevented. Furthermore, to deal with iso-

lated non-skin pixels in skin regions (or the opposite), edge in-

formation is used to impose correlation between skin likelihoods

of neighboring pixels. Thus, a skin likelihood map consists of

contiguous skin regions corresponding to actual skin regions.

Experiment results show that SALSA produces natural looking
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face and non-facial skin regions in the enhanced image while

keeping the same level of enhancement on non-skin regions.

In the following, local contrast enhancement using the YENI

filter is discussed. Then, the skin color model used is discussed

along with how the skin likelihood is obtained using the edge

information. Next, the amplification gain modulation using this

likelihood is described. Finally, experimental results are pre-

sented and conclusions are drawn.

2. LCE USING THE YENI FILTER

The enhanced image pixel y(m,n) is obtained from the input

image pixel x(m,n) as

y(m,n) = μ(m, n) + [1 + g(m,n)][x(m, n) − μ(m, n)], (1)

where μ(m,n) is the local mean, g(m, n) is the enhancement

gain, m is the row number, and n is the column number.

YENI filter finds the local mean by averaging two opposite

direction non-linear filters operating row-wise. Row-wise im-

plementation is done to save computational time and memory

resources. A gain function is designed to suppress noise visibil-

ity in smooth regions and amplify local details.

The local mean μ(m,n) at row m and column n is the output

of YENI filter, which is the average of two different filter outputs

given by

μ(m, n) =
μF (m,n) + μB(m, n)

2
. (2)

where μF (m,n) and μB(m,n) are the outputs of the two oppo-

site direction filters that run horizontally on a single row. The

first filter runs from left to right and is referred to as the for-

ward filter. The forward filter outputs μF (m, n). The second

filter runs from right to left and is similarly referred to as the

backward filter. The backward filter outputs μB(m,n). The two

filters are single pole infinite-length impulse response (IIR) fil-

ters at any given pixel location. The input-output relationship

for the forward filtered μF (m, n) is

μF (m,n) = λ(m,n)μF (m,n−1)+[1−λ(m, n)]x(m,n), (3)

and for the backward filtered μB(m,n) is

μB(m,n) = λ(m,n)μB(m, n+1)+[1−λ(m, n)]x(m,n), (4)

where λ(m,n) is the edge adaptive delay coefficient.

The adaptation of λ(m, n) to the edge information is crucial

for preventing the smoothing of edges. Considering that λ(m,n)
is the weight of the previous output, a stronger λ(m,n) increases

the low-pass characteristic of the filter. Hence, when an edge is

encountered, λ(m,n) must be decreased so that the edge will be

preserved in the output. The used edge signal is |μF (m,n−1)−
x(m,n)| for the forward filter, and |μB(m,n+1)−x(m,n)| for

the backward filter. Both of the edge signals are the differences

between the original pixel value and the previous filter output.

Using these edge signals, λ(m,n) is obtained using

λ(m,n) = [1 − |μF (m,n − 1) − x(m, n)|
255

]α (5)
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Fig. 1. Enhancement gain function

for the forward filter, and using

λ(m,n) = [1 − |μB(m,n + 1) − x(m,n)|
255

]α (6)

for the backward filter.

Here, 255 is used for the maximum possible pixel value. As

can be observed from (5) and (6), strong edges reduce λ(m,n)
more, hence the low-pass characteristic of the filter is lessened.

Typical α values range from 5 to 9.

2.1. Transfer function of the YENI filter

For ease of notation, the original pixel at the nth column of row

m is denoted as xm(n). Then, each row of the original image

is a 1-D signal. From (3) and (4), the transfer function of the

forward and backward filters at a locality with λ(m,n) = λ are

derived as below

HF (w) =
1 − λ

1 − λe−jw
(7)

HR(w) =
1 − λ

1 − λe+jw
, (8)

respectively. Here, it is implicitly assumed that λs for the two

filters are equal since ideally edge information at the same local-

ity must be the same. The stability condition for the IIR filters

(i.e. the poles must lie inside the unit circle) is satisfied by (5)

and (6) since 0 ≤ λ ≤ 1.

From (7) and (8), it can be seen that the phases of both filters

not being zero causes a phase shift in the filtered output. In fact,

the forward filter lags and the backward filter leads the input sig-

nal xm(n). However, the frequency response of the local mean

filter using (2), (7), and (8) can be obtained as below

H(w) = (1 − λ)
1 − λ cos(w)

1 − 2λ cos(w) + λ2
, (9)

which has a zero phase. Thus, the 1-D local mean filter applied

row-wise and given by (2) does not shift the 1-D input signal

column-wise.
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2.2. Enhancement Gain Function

There are two important design goals for the enhancement gain

function: avoiding noise visibility especially in smooth regions

and preventing intensity saturation to minimum and maximum

possible intensity values (e.g. 0 and 255 for 1 byte per channel

source format). To deal with these problems, the enhancement

gain depends on the magnitude of the detail in that locality.

To avoid noise visibility in smooth regions, the gain should

also be small when the magnitude of the local detail is small. As

the details increase the gain should also be increasing. However,

increasing the gain function continuously may lead to saturation.

This can be prevented by reducing the enhancement gain after

some point. Considering these specifications, a gain function is

designed that is an upward shifted cosine evaluated in the 3rd

quadrant for [a-b], and a cosine evaluated in the 1st quadrant for

[b-c], where a, b, and c are levels for the local detail’s magnitude

as shown in the example gain function given in Fig. 1. Here, a,

b, c, and K are chosen as 1, 7, 21, 1, respectively, where K is

the maximum achievable gain that determines the strength of the

enhancement signal.

3. SKIN AWARE LOCAL CONTRAST ENHANCEMENT

Skin color models can be divided into two groups in general:

parametric and non-parametric models. Non-parametric models

are mainly histogram-based models learned from training data

sets. They require memory and may not generalize depending on

the representativeness of the training set. However, parametric

modeling interpolates the training set and generalizes better. The

interpolation is a desired feature for the objective since a soft

discrimination between skin and non-skin pixels is wanted.

3.1. Gaussian skin color model

Modeling skin color distribution with a Gaussian model is done

before in [10–12]. The joint probability density function of the

color vector, c, of a pixel given that it is a skin pixel is defined

as:

p(c|s = 1) =
1

2π|Σ|1/2
e

1
2 (c−μ)T Σ−1(c−μ), (10)

where s = 1 indicates a skin pixel, μ is mean vector, and Σ is

covariance matrix. The Gaussian parameters estimated in [5] for

the YCbCr color space are used

μ =
[

μb

μr

]
=

[
108.15
152.00

]
(11)

Σ =
[

σ2
b σbr

σbr σ2
r

]
=

[
55.77 −58.66
−58.66 85.27

]
(12)

Since linear combinations of Gaussian variables are also Gaus-

sian variables, to find the Gaussian parameters for other col-

orspaces, such as the YUV for analog composite video, all one

needs to do is to transform the above estimates using the trans-

formation matrix T between the two colorspaces (i.e. the trans-

formed estimates are Tμ, TΣTT ).

Using Bayesian formula the posterior probability of a color

vector to come from a skin pixel (i.e. the skin likelihood) is

p(s = 1|c) =
p(c|s = 1)p(s = 1)

p(c)
(13)

The prior probability of skin p(s = 1) will be a constant de-

pending on the type of the image or video. To save computa-

tion, color vectors are assumed to be uniformly distributed on the

color space (i.e. all colors are equally likely with p(c) =
1

2242
).

Hence,

p(s = 1|c) = k p(c|s = 1). (14)

k = 1 is used in the following discussions and the experimental

results.

An example image and its skin likelihood map is given in

Fig. 2(a) and Fig. 2(b). Isolated non-skin pixels in skin regions

and skin pixels in non-skin regions can be seen. This is partly

due to the Gaussian model’s failure (e.g. the non-skin pixels on

the face) and use of the color information only to detect the skin.

For example pixels on the edge’s of the shirt have skin color

because slow chrominance transitions imposed by the composite

analog video broadcast standards (e.g. NTSC, PAL) cause hue

change artifacts and in this case the hue changes from shirt’s

red color to skin color on the edges. To deal with the Gaussian

model’s failure, the edge information is used to impose spatial

correlation between the skin likelihoods.

As described in Section 2, λ of the YENI filter (a number

between 0 and 1) is updated with the edge information using (5)

such that lambda decreases with the edge strength. To deal with

isolated skin likelihoods (SLs), the skin likelihood is correlated

in a locality with a recursive estimation that adapts the amount of

correlation according to the edge strength. No correlation across

the edges is imposed.

Since λ is between 0 and 1, the probability of edge is as-

sumed to be p(E = 1) = (1 − λ); then, the probability of no

edge is p(E = 0) = λ. Then, SL in a locality, p̄(s = 1), can be

written in terms of its conditional probabilities:

p̄new(s = 1) = p̄old(s = 1|E = 0)p(E = 0) + p(s = 1|c)p(E = 1),
(15)

where p̄new is the updated local SL using the old local SL (p̄old)

and current pixel’s SL. In other words, the old local SL is used if

there is no edge and current pixel’s SL is used if there is an edge.

To decrease the estimation variance of the local SL, a weighted

average using the current pixel’s SL is calculated as

p̄old =
7
8
p̄old +

1
8
p(s = 1|c). (16)

Substituting (16) and edge probabilities in (15) gives

p̄new =
7
8
λp̄old + (1 − 7

8
λ)p(s = 1|c). (17)

An example map for the correlated skin likelihood is given

in Fig. 2(c).

Using this skin likelihood, the enhancement gain can be mod-

ulated so that a skin pixel will be enhanced less than a non-skin

pixel. This way, the natural look of the face can be preserved
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while other parts of the image are enhanced. This modulation

can be done using the updated local SL (p̄new) (17) in (1) as

below

y(m,n) = μ(m, n) + [1 + (1 − p̄new)g(m,n)]
[x(m,n) − μ(m,n)]. (18)

Thus, amplification of the local detail will decrease with its

skin likelihood. Other modulation functions can also be used

such as the square root of skin likelihood if less amount of skin

enhancement is desired. Furthermore, for a better visual quality

one can smoothen skin regions by contracting the deviation from

local luminance mean instead of amplifying it with a gain. This

can simply be done by making the gain negative for highly likely

skin regions as below

y(m,n) = μ(m,n) + [1 +
k − p̄new

k
g(m,n)]

[x(m,n) − μ(m,n)]. (19)

where the used gain modulation function (k−p̄new

k ) is negative

for p̄new > k and 1 for p̄new = 0.

4. EXPERIMENTAL RESULTS

Video captured from an NTSC broadcast is used for performance

evaluation. Fig. 2(c) shows that by correlating the SLs, isolated

likelihoods are lessened and smoothed. Fig. 2(c) gives an im-

aged enhanced using LCE only. Unnatural looking skin regions

can be seen on the nose, sides of the mouth and on the right

side of the neck. These artifacts on the face and the neck are al-

most removed using SALSA as shown in Fig. 2(e) and Fig. 2(h).

It is important to note that there is no loss of enhancement on

non-skin regions. Smoothing the skin regions looks more natu-

ral as given in Fig. 2(f) and Fig. 2(i), which are smoothed using

k = 0.75. However, this comes with a cost and the level of en-

hancement on the other image part is not as strong as SALSA

without smoothing.

5. CONCLUSIONS

Contrast enhancement is a technology used in medical imaging

and consumer electronics display applications. Image enhance-

ment for Television displays makes use of LCE techniques. How-

ever, these techniques can sometimes produce unnatural images

especially on human faces. To deal with this problem, modulat-

ing the enhancement gain with the skin likelihood is proposed.

Spatial correlation is imposed on the likelihoods to reduce iso-

lated skin and non-skin pixels. Furthermore, a light level of

smoothing for the face is also proposed while enhancing other

parts of the image.
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