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ABSTRACT
This paper describes a supervised segmentation algorithmwhich
draws inspiration from recent advances in non-parametric tex-
ture synthesis. A set of example images which have been
segmented a priori are used as a guide in the segmentation
process. This new algorithm is built on the Bayesian frame-
work and combines the strengths of both parametric and non-
parametricmodelling techniques. The suitability of the wavelet
transform for texture modelling is highlighted and an outlier
class condition is introduced as a means to increase the flexi-
bility of the algorithm. Segmentation results demonstrate the
potential of this new algorithm.

Index Terms— Image Segmentation, Non-Parametric and
Parametric Modelling, Dual Tree-Complex Wavelet Trans-
form, Markov Random Field.

1. INTRODUCTION

The segmentation of an observed image into an unknownnum-
ber of distinct regions remains a fundamental issue in low-
level image analysis. Depending on the amount of informa-
tion given a priori, the segmentation problem can be classi-
fied as unsupervised (observed image only), semi-supervised
(observed image and the number of regions present) or super-
vised (observed image, number and description of the regions
present). By its nature unsupervised segmentation is an ill-
posed problem. This paper is related to semi-supervised and
supervised techniques addressing a problem that is less am-
biguous.

Direct applications of a successful segmentation algorithm
are broad and varied, including medical and satellite image
analysis, content based retrieval and image compression. Spurred
on by the benefits of a fully or semi automated segmenta-
tion, there have been many different techniques developed
and good reviews of these techniques can be found in [1, 2].
Of the previous approaches developed, those based on the
Bayesian framework have been found to be the most stable
and robust. Bayesian segmentation algorithms can be classi-
fied as parametric or non-parametric. Parametric models de-
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scribe the image using some definable process, characterising
image behaviour using a finite set of parameters each of which
need to be estimated. In contrast, non-parametric approaches
offer no such definite model and rather attempt to describe
image behaviour implicitly by taking measurements from ei-
ther the image itself or some set of example training images.
Because of their efficiency and suitability to image analysis,
parametric methods have been the most popular. However,
non-parametric approaches have shown impressive results in
texture synthesis applications [3, 4, 5] and have been recently
applied to the segmentation problem [6].

This paper presents a new supervised segmentation algo-
rithm exploiting an example based likelihood function. The
observed image is modelled implicitly using empirical mea-
surements taken from an example set of images of similar
content. This non-parametric modelling technique is derived
from the texture synthesis algorithm given in [5]. Unlike the
fully non-parametric approach proposed by Mignotte [6], the
algorithm described here captures the smooth nature of the la-
bel field by modelling it as a Markov Random Field (MRF).
Both the parametric and non-parametric energies are com-
bined in a Bayesian framework. To improve the flexibility
of the algorithm an outlier class condition will be introduced
and the benefits of multi-resolution analysis are exploited by
performing segmentation in the wavelet domain. Segmenta-
tion results demonstrate the potential of this new algorithm.

2. THE LIKELIHOOD ENERGY REQUIRED

Let � denote the observed image and� its segmentation. Both
� and � are defined on the lattice � and indexed using the
spatial vector �. Since it contains both spatial and statistical
information, texture is chosen as the feature descriptor for the
underlying image model. The observed image can now be
to be considered as a mixture of textures where each pixel is
given as,

���� � �������� (1)

where �������� represents the intensity value associated with
the texture labelled ���� at position �. The problem of seg-
mentation now becomes that of: (i) estimating the textures
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�� for � � �� � � � �� which make up the observed image and
(ii) mapping the label field � using information from the esti-
mated textures and the observed image. A typical parametric
approach would characterise each texture region using a finite
number of parameters. For example, the 2� Auto Regressive
(AR) model given by,

�������� �

��

���

���������� ��� � ���� (2)

where ���� � � ��� ��� �, �� are offset vectors and the 	 coef-
ficients of the model are denoted �� for 
 � �� � � � � 	 . Recent
work in texture synthesis [7] has shown that non-parametric
modelling process outperformparametric approaches in terms
of the accuracy with which they can capture the image be-
haviour. Based on this research the approach taken here will
model the observed image implicitly using only heuristic mea-
surements from some set of example texture images which
have been segmented a priori. In order for this non-parametric
model to be accurate each of these texture images must satisfy
the following conditions: (i) they must be statistically similar
to the textures found in the image to be segmented and (ii)
they must be large enough to capture the underlying statistics
of the infinite texture pattern. Figure 1 shows an example of
an observed image � to be segmented and the example training
texture set �������������which will be used to implicitly
model �.

(a) Observed image (b) Example textures

Fig. 1. Example based segmentation input parameters (a) observed
image � and (b) Training textures �������������.

To apply this non-parametric modelling technique to the
segmentation problem, the most likely label at each site is that
which minimises the energy between the observed image and
example images. That is, to estimate the most likely label
���� for the pixel ����, its � non-causal neighbourhood
���� is constructed and compared to all possible neighbour-
hoods in each of the example textures. The distance between
two neighbourhoods, denoted by������� ����� is given by
the �� distance metric. The best matching neighbourhood
����� is found and the label associated with the texture from
which ����� is located is then taken as the most likely label
for ����. This local energy minimisation takes place at each

site � � � resulting in the minimising of the following global
energy function,

������� �
�

���

	�


��

��	
	����

������� ����� (3)

Finding the configuration that minimises expression (3) is equiv-
alent to estimating the maximum likelihood (ML) segmenta-
tion of �. To illustrate the strength of this non-parametric en-
ergy based model, Figure 2 shows the ML segmentation ob-
tained using (a) the 2D AR model and (b) the non-parametric
model. A neighbourhood width of 
 � 
 was used in both
modelling processes. The observed image and the training
texture set are given in Figure 1.

(a) Parametric (b) non-parametric

Fig. 2. Comparing parametric and non-parametric ML segmenta-
tions.

In terms of efficiency, the parametric approach demands
less computational power and is much faster. In terms of
accuracy of the modelling process, the non-parametric mod-
elling process performs better and the resultant segmentation
contains fewer mis-classified pixels. It should be noted that
the strength of the non-parametric approach is very much de-
pendent on the visual similarity of the training and observed
textures. In cases where the training textures are dis-similar to
the observed textures, the parametric model will offer a bet-
ter generalisation and so the parametric segmentation will be
better.

3. INTRODUCING THE PRIOR

ML segmentation will tend to give a solution similar to the
data. Intuitively the label field should be smooth and such
smoothness is introduced by imposing regularisation energy
over the label field. The segmentation algorithm developed
by Mignotte [6] measures this energy using a non-parametric
modelling process similar to that used in the intensity im-
age. The result is a fully non-parametric segmentation al-
gorithm. While this is novel, it does suffer from some seri-
ous drawbacks which the approach taken here aims to over-
come. Firstly, if the label field and intensity field are mod-
elled using only an example image, then the modelling pro-
cess will only support configurations which are found in the
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example image. To illustrate, if region �� is located beside
region �� in the example image, then the modelling process
will only support configurations where �� is located beside
��. To overcome this, the approach taken here treats each
training image as separate texture feature and the regularisa-
tion energy is calculated by enforcing a parametric Markov
Random Field (MRF) model over the label field. Because of
its ability to capture smooth behaviour, the Potts model was
chosen. Combining both the likelihood energy from the non-
parametric model and the prior energy from the parametric
model yields the following function which an MAP segmen-
tation seeks to minimise,

������������ �
�

���

�

����

���

���
����

������� �����

� �

��

���

����� Æ������� ���� ������

(4)

where � provides a weighting between the data driven and
regularisation terms. To obtain an approximation to the global
minimum energy configuration, the ICM process is used. At
each site � � �, the label which minimises the local en-
ergy is found and this process is repeated until convergence
is achieved. Pixel labels are updated in a checkerboard scan-
ning order and the initial segmentation is obtained using the
data driven energy only, i.e. � � 	 and all other iterations
use � � 		
. A neighbourhood size of � � � was used. Be-
fore discussing the multi-resolution implementation an outlier
class condition which has been introduced will be discussed.

4. THE OUTLIER CLASS

The outlier class is assigned to any texture that is found in the
observed image which is not considered to be similar enough
to any of the input example textures. This outlier class is
useful in cases when only certain regions or objects are of
interest in the segmentation such as content based retrieval.
To estimate an approximate threshold under below which an
observed texture will be assigned an example texture label,
the distribution of distances of neighbourhoods which belong
to the same class was examined. To calculate this distribu-
tion each possible neighbourhood in the example texture was
compared to every other possible neighbourhood in the same
example texture. For an 
� ��� sized texture, there will be
�
�����

� distances and this set is composed of the follow-
ing entries,

� � �������� ���������� � ��� (5)

where� is the distribution of neighbourhood distances and �
and � are two spatial vectors used to index the lattice �� on
which each example texture is defined.

The distribution � is assumed to be Gaussian and so the
mean and variance can be used to calculate confidence inter-
vals within which class membership will lie. Any neighbour-

(a) Example texture and �

(b) Observed image (c) MAP Segmentation

Fig. 3. Segmentation showing outlier class.

hoods whose distances fall outside this threshold are assigned
the outlier class. Figure 3 (a) shows a distribution of neigh-
bourhood distances for the example texture given and images
(b) and (c) show the observed image and its segmentation.
The outlier texture is indicated by the blue label.

5. DT-CWT SEGMENTATION

The advantages of multi-resolution image analysis has been
well established. With its shift invariance and good direc-
tional selectivity, the Dual Tree-Complex Wavelet Transform
(DT-CWT) [8] provides a natural domain for the modelling
and analysis of textures. Evidence of this is shown in [5]
and the means by which the energy based function given in
(4) is extended to work within the DT-CWT domain follows
on from the method discussed in [5]. At each level � of
the DT-CWT, six directionally selective sub-band images de-
noted �� are created. These sub-band images are used in a
multi-directional neighbourhood comparison similar to that
described in [5]. Neighbourhoods used in the energy min-
imisation process are now �D and consist of wavelet coeffi-
cients from each of the sub-band images. At each level of the
transform, the algorithm seeks to minimise an energy function
similar to that given in (4)

Moving from a coarse to fine resolution, energy minimi-
sation takes place at each level � using the segmentation ob-
tained at level ��� as an initialisation. Beginning at the coarse
level the initial segmentation is obtained using the data driven
term only, i.e. � � �. Figure 4 shows a ML (c) and MAP
(d) segmentation of the frame image shown in (a). Each of
the example textures (b) were taken from an earlier frame in
the sequence. Considering that this is a difficult problem to
solve as the lighting conditions change with frame number the
algorithm performs well at capturing the main regions in the
image.

Figure 5 shows a MAP segmentation using (a) the method
proposed by Mignotte [6] and (b) DT-CWT Segmentation.
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(a) Observed image � (b) Example textures �����

(c) DT-CWT Segmentation (ML) (d) DT-CWT Segmentation (MAP)

Fig. 4. Finding objects in sequences.

Note the poor segmentation at the boundary regions in seg-
mentation (c) due to different configurations between the ex-
ample and observed images. The result in (d) avoids this. Fu-
ture work will consider how the smoothness of the DT-CWT
Segmentation can be improved by using an alternative model
over the label field.

6. FINAL COMMENTS

We cannot claim that this method as presented is computa-
tionally effective given the large amounts of neighbourhood
searches to be conducted, however given the success of ef-
ficient implementations of the Efros class of synthesis algo-
rithms, we are confident that this is not a major issue. Neither
can we claim that we have demonstrated substantially bet-
ter segmentation than other supervised techniques, but our re-
sults are certainly an improvement over the work of Mignotte.
However we have demonstrated that there is interesting po-
tential here for exploring the usefulness of example based seg-
mentation. The outlier class condition certinaly increases the
flexibility of the algorithm. One of the weaknesses of the non-
parametric approach is its need for the example and observed
textures to be perceptually similar. This problem affects all
supervised algorithms in that the training set must be rich
enough for segmentation to be useful. Certainly there is scope
for combining parametric and example-based techniques for
the purpose of better generalisation. Example based segmen-
tation remains an interesting and intriguing idea as compute

(a) Observed image � (b) Example textures �����

(c) DT-CWT Segmentation (d) Mignotte [6] Segmentation

Fig. 5. Comparing segmentation results.

resources and database sizes increase.
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