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ABSTRACT

In this work, we propose a new grid conversion algorithm be-
tween the hexagonal lattice and the orthogonal (a.k.a. Carte-
sian) lattice. The conversion process, named H2O, is easy
to implement and is perfectly reversible using the same al-
gorithm to return from one lattice to the other. The key ob-
servation of our approach is a decomposition of the lattice
conversion as a sequence of shearing operations along three
well-chosen directions. Hence, only 1-D fractional sample
delay operators are required, which can be implemented by
simple convolutions. The proposed algorithm combines re-
versibility and fast 1-D operations, together with high-quality
resampled images.

Index Terms— 2-D lattices, resampling, shears, hexago-
nal sampling, interpolation

1. INTRODUCTION

Sampling on the hexagonal lattice has several attractive prop-
erties. For instance, assuming an isotropic power spectrum,
information can be more efficiently represented [1]. Also,
higher symmetry and well-defined connectivity is advanta-
geous for various fundamental image processing tasks [2, 3].
Despite the fact that hexagonally-arranged sensor arrays have
been built (e.g. [4]), images are still almost exclusively avail-
able on the orthogonal lattice. Two important reasons can be
put forward: (1) direct visualization of the data on display
devices; (2) wide availability of 1-D algorithms that can be
applied in a separable way on the orthogonal lattice.

Traditionally, grid conversion between the orthogonal and
hexagonal lattices is based on discrete/continuous models.
Conceptually, a generator function is placed and weighted
on every lattice site after which new samples on the target
lattice are obtained. In general, consecutive conversions be-
tween the orthogonal and hexagonal lattices (of same sam-
pling density) will increasingly degrade the quality of the
data. Also, interpolation methods on the hexagonal lattice
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Fig. 1. The regular hexagonal lattice (left) and the square
lattice (right), with same sampling density 1.

typically rely on non-separable generator functions, such as
the three-directional box-splines [5, 6] or hex-splines [7]. The
use of these functions requires a non-separable IIR prefilter-
ing step, that is computationally expensive and whose imple-
mentation is not straightforward (see for example [7]).

In this paper, we propose a new approach, named H 2O, to
perform grid conversions between the orthogonal and hexag-
onal lattices of same sampling density (shown in Fig. 1), en-
suring exact reversibility. The method is based on the ob-
servation that the hexagonal grid can be turned into the or-
thogonal one (or conversely) by three successive shearing op-
erations. The principles of this method are exposed in Sect.
2. That way, converting the data can be done by 1-D filtering
along each shearing direction to compensate for the respective
shifts. As detailed in Sect. 3, the use of fractional delay filters
enables us to obtain reversibility and treat the orthogonal-to-
hexagonal case the same way as the hexagonal-to-orthogonal
one. With the proposed choice of filters, we also offer a good
resampling quality, as validated in Sect. 4 by experiments.

Our novel approach for resampling between these two lat-
tices may be of particular interest in the following contexts:
(1) Hexagonal to orthogonal resampling, which is often re-
quired when handling hexagonally sampled data, can be per-
formed fast and efficiently with H2O using 1-D filtering only.
More important, the reversibility ensures that no loss of infor-
mation is introduced in this conversion operation; (2) Images
sampled on the orthogonal lattice can be converted onto the
hexagonal lattice, where many image processing tasks are ad-
vantageous, especially morphological operations [8, 9]. The
reversibility ensures that the initial image can then be per-
fectly recovered.
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Fig. 2. A sequence of three shearings transforms the hexagonal lattice into the orthogonal one. These shearings are applied
along the natural directions of the lattices.

1.1. Mathematical preliminaries

A 2-D lattice is a set of points in the plane, characterized by
two linearly independant vectors r1 and r2 grouped in a ma-
trix R = [r1 r2], such that the lattice sites are the locations
Rk for every k = [k1 k2]T ∈ Z

2. Its sampling density is
1/| det(R)| (lattice sites per unit surface area). The orthogo-
nal lattice Z

2 is obtained ifR is the identity matrix, while the
regular hexagonal lattice with same sampling density 1, as in
Fig. 1, corresponds to the choice

R =

√
2√
3

[
1 1/2
0

√
3/2

]
. (1)

2. LATTICE CONVERSION BY SHEARINGS

A continuous shearing corresponds to a displacement of a
point x in a direction a, with amplitude proportional to
〈x,a⊥〉 where a⊥ = [−a2 a1]T is orthogonal to a. So, we
have the linear shearing operator x �→ x + λ〈x,a⊥〉a, which
can be characterized by the matrix S = I + λaa⊥T.

Fig. 2 shows how a sequence of three shearings transforms
the hexagonal lattice into the orthogonal one. Each shearing
is chosen along a “natural” direction of the current lattice;
thus it is performed by operating only on 1-D directions of
the image. Let us detail how these shearings are determined:

• The first shearing operates on the hexagonal lattice with
matrix R. We look for a shearing operating along the
second vector r2 of this lattice, thus with matrix S1 =
RM1R−1 whereM1 has the form

M1 =
[

1 0
a 1

]
. (2)

That is to say, with this change of basis,M1 is the ma-
trix of the shearing in the basis of the lattice, while S1

is its matrix in the canonical basis.

• After the first shearing, the lattice has matrix RM1.
We look for a shearing operating along the “diago-
nal” direction of this lattice, thus with matrix S2 =

(RM1)M2(RM1)−1 whereM2 has the form

M2 =
[

1 + b b
−b 1 − b

]
. (3)

• The lattice has now matrix RM1M2. We look for a
shearing operating along the first vector of this lattice,
thus with matrix S3 = (RM1M2)M3(RM1M2)−1

whereM3 has the form

M3 =
[

1 c
0 1

]
. (4)

At the end, the lattice has matrix RM1M2M3. Since we
want it to be the orthogonal lattice (with matrix I), our matri-
ces are determined by the equality

M1M2M3 = R−1. (5)

We only have to identify the coefficients in this equality to

obtain the desired values a = 1 −
√

2/
√

3, b =
√√

3/2 − 1

and c =
√

2/
√

3 − 1 − 1/
√

3.
We also have the factorization S3S2S1 = R−1, which is

actually the decomposition, into the three designed shearings,
of the geometric operation that transforms the hexagonal lat-
tice into the orthogonal one. Note that this decomposition is
not unique. It also depends on our choice of vectors charac-
terizing the lattices, which is arbitrary. The intuition behind
the decomposition presented here is to transform the vector r 1

of the hexagonal lattice into [1 0]T, which requires two shear-
ings (see Fig. 2). A third horizontal shearing then transforms
r2 into the vertical vector [0 1]T of the orthogonal lattice.

3. THE H2O ALGORITHM

The decomposition of the lattice conversion process in three
shearings suggests a new way to perform the resampling pro-
cess between the hexagonal and the orthogonal lattices in
three successive operations, converting the data between the
successive lattices depicted on Fig. 2. The key property of this
process is that it only involves 1-D operations at a time. Thus,
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the practical implementation of H2O consists of the following
three steps:

• On each column of the image u with index k1, perform
a translation of amplitude−a.k1 (in the direction ↑).

• On each diagonal of the image with index k, perform a
translation of amplitude−b.k (in the direction↘).

• On each row of the image with index k2, perform a
translation of amplitude−c.k2 (in the direction→).

For orthogonal to hexagonal conversion, we just have to
reverse the order of the translations and make them in the
opposite directions. Further on, we concentrate on the way to
perform the 1-D translations.

A 1-D translation with amplitude τ : s �→ s′ is achieved
by means of a convolution with a fractional delay filter [10]:
s′ = s ∗ hτ . Let us define the Z-transform of hτ by
Hτ (z) =

∑
k∈Z

hτ [k]z−k. We now have to design a collec-
tion of filters hτ for every τ ∈ R. To maintain the symmetry
of the treatments, we first impose the condition that the delays
with τ and −τ are symmetric operations, that is

H−τ (z) = Hτ (z−1). (6)

In order for the hexagonal to orthogonal resampling to be re-
versible by mirroring the applied operations, we also impose
the condition:

H−τ (z) =
1

Hτ (z)
. (7)

Eqns (6) and (7) together constrain the delay filters to be all-
pass filters, that is, to have magnitude 1 in the frequency do-
main: |Hτ (ejω)| = 1, ∀ω ∈ R. The simplest all-pass de-
lay operator is the nearest-neighbor approximation: H τ (z) =
z−�τ+1/2�. All rational all-pass fractional delay filters may
be written under the formHτ (z) = z−KDτ (z)/Dτ (z−1) for
someK ∈ Z and some polynomialDτ (X) of degreeN [10].
The only known class of such filters having explicit formulas
of their coefficients as a function of τ is the class of Thiran’s
filters. We refer to [10] for their formulas as well as a review
of their properties. We also consider the limit case of Thi-
ran’s filters as the order N → ∞, which tends to the ideal
sinc-based delay filters Hτ (ejω) = e−jτω, ∀ω ∈ (−π, π),
which can be implemented by a phase shift on the Fourier co-
efficients. We compare the performances of these filters in the
next section.

4. EXPERIMENTAL VALIDATION

In order to evaluate the quality of the resampled image in a
hexagonal to orthogonal setting, we need data available on
both lattices. For that purpose, we generate a synthetic im-
age by sampling on the hexagonal lattice the zoneplate pattern

hex.→ Cart.
Method hex. → Cart. then

Cart. → hex

H2O – nearest neighbor 20.12 ∞
H2O – ThiranN = 1 36.15 ∞
H2O – ThiranN = 2 42.86 ∞
H2O – ThiranN = 3 47.28 ∞
H2O – sinc 53.55 ∞
2-D linear interpolation 32.68 27.48

Table 1. PSNR results for the hexagonal to orthogonal resam-
pling problem using the synthetic zoneplate image.

with analytical formula

f(x) = 127.5 + 127.5 cos

(
1440/π

1 + 512/
√

8(x2
1 + x2

2)

)
. (8)

We convert this initial image onto the orthogonal lattice by
means of the H2O method. The obtained image is then com-
pared to the ground-truth image obtained by sampling the
zoneplate pattern on the orthogonal lattice. The results are
reported in Tab. 1 and illustrated in Fig. 4. The quality in-
creases rapidly with the order of the filter and the simplest
Thiran filter already achieves a good resampling quality. For
comparison, we also give the PSNR obtained by resampling
between the lattices using classical 2-D linear interpolation;
that is, separable linear interpolation on the orthogonal lattice
and “tri-linear” interpolation with the “tent” box-spline func-
tion [6] on the hexagonal lattice. The quality of this method is
quite low and it is not reversible: going back to the orthogonal
lattice does not render the initial image, but a largely distorted
(mainly blurred) version of it. These preliminary results for
the zoneplate image are promising and future work will in-
vestigate the performance for other types of images.

Since our filters are all-pass, they do not introduce blur-
ring, contrary to interpolation methods. An example of re-
sampled images with H2O is depicted in Fig. 3. The Thiran
filters deliver images almost free of artifacts. Our approach is
also very fast, since only three 1-D filtering are required for
converting an image to the other grid. This is less expensive
than with 2-D interpolation methods. Moreover, since all the
treatments are 1-D, savings of memory storage are allowed
and the resampling task can be performed in-place.

5. CONCLUSION

In this work we presented H2O: a novel, fast, and high-quality
method for converting data between the hexagonal and or-
thogonal lattices. The key property of H2O is its exact re-
versibility. We are currently working on the extension of the
method for conversion between two arbitrary lattices of same
sampling density, in 2-D and higher dimensions. For instance,
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(a) (b) (c)

Fig. 3. The “eye of Lena” defined on the orthogonal lattice (a) is resampled on the hexagonal lattice using our H 2O method
with the nearest neighbor filter (b) and the order 1 Thiran filter (c). While the first approach is too rough (it simply consists in
re-ordering the pixels of the image (a) on the hexagonal lattice), the Thiran filters provide images free of artifacts. Increasing
the order of the Thiran filter makes no visible difference with the image (c). Note that resampling using classical interpolation
methods would introduce blurring. Using H2O in reverse order exactly recovers the initial image (a) from (b) or (c).

reversible conversion between the BCC and orthogonal lat-
tices in 3-D is of practical interest in computer graphics [11].
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H2O with nearest neighbor filter

H2O with orderN = 1 Thiran filter

H2O with orderN = 2 Thiran filter

H2O with sinc filter

Fig. 4. Central part of the resampled images (left) and dif-
ferences with the reference image (right) for the hexagonal
to orthogonal resampling problem using the zoneplate image.
The reference image is undistinguishable from the resampled
image with the sinc filter.
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