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ABSTRACT

This paper addresses the problem of compact representation of a 3D

scene, captured by distributed omnidirectional cameras. As the im-

ages from the sensors are likely to be correlated in most practical

scenarios, we build a distributed algorithm based on coding with side

information. A reference image is processed with a wavelet trans-

form and progressively encoded. The Wyner-Ziv images undergo a

multiresolution representation, and the generated bitplanes are chan-

nel encoded with LDPC codes. The central decoder eventually re-

constructs the Wyner-Ziv images given by the syndrome bits from

the channel codes using the reference omnidirectional image. It also

iteratively implements motion estimation on the 2-sphere in order

to improve the side information. Experimental results demonstrate

that distributed coding improves the rate-distortion performance for

coding a set of omnidirectional images when compared to indepen-

dent coding solutions. The proposed method can further be ex-

tended to the decoding of multiple Wyner-Ziv images using one sin-

gle reference omnidirectional image. Hence, it achieves a reduced

overall coding rate compared to disparity-based schemes. In addi-

tion, it does not require explicit knowledge of the camera parameters

nor precise calibration, which is certainly interesting in camera net-

works.

Index Terms— Distributed coding, omnidirectional imaging,

plenoptic function

1. INTRODUCTION

Camera sensor networks are used in several applications like surveil-

lance or object tracking to collect useful data from physical environ-

ments. These sensors capture a scene from different view points and

generate a series of correlated images of overlapping views. In most

scenarios, sensors hardly communicate among themselves due to

power limitations. This clearly limits the possibility for joint encod-

ing of the correlated images, which is moreover too computationally

complex to be performed in the vision sensors. It becomes therefore

necessary to develop distributed coding algorithms where images are

encoded independently at each sensor, while the decoder tries to ex-

ploit the correlation between images for improving the quality of

jointly decoded images.

Distributed source coding (DSC) relies on the theoretical back-

ground for distributed compression proposed by Slepian-Wolf [1]

and Wyner-Ziv [2]. Although the theoretical foundations have been
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defined in the late seventies, the first constructive design of a DSC

scheme using channel codes [3] has been formulated only recently.

It has further motivated several researchers to build DSC solutions

using different channel codes based on Turbo or LDPC codes [7].

Recently, distributed video encoders have been proposed using the

Wyner-Ziv theorem [4]-[6], in an effort to reduce the complexity of

the encoding process by shifting the motion estimation procedure to

the decoder. Distributed coding has also been applied to multires-

olution hyperspectral images [14]. However, only few studies have

been reported on the application of distributed image coding to cam-

era sensor networks. In these scenarios, researchers have reached

improved coding performance by (i) exploiting the correlation be-

tween the images by disparity estimation using homography [8], (ii)

motion estimation procedure [9] and (iii) coset encoding with opti-

mal design of quantizers [10].

We consider a framework where the spherical images are cap-

tured by the omnidirectional cameras distributed arbitrarily in a 3D

scene. As they give a full view of the 3D scene, omnidirectional

images are very suitable for scene representation. After mapping

to spherical images, omnidirectional images capture the plenoptic

function in its radial form, without Euclidean discrepancies. We

propose a coding scheme based on DSC principles, where the side

information is generated from one reference image, contrarily to the

scheme in [8] where the side information is generated using dispar-

ity estimation from two reference images. The proposed framework

is therefore more robust, since it can be easily extended to multiple

cameras without the need for complex calibration methods. Such

an advantage becomes even more important in dynamic camera net-

works, where real-time camera calibration is almost impossible. The

omnidirectional images undergo a wavelet transform (WT) coupled

with a progressive representation implemented by the SPIHT algo-

rithm [11]. The bit plane level statistical correlation between images

is exploited using LDPC codes. The benefits of such an approach

include better compression with little processing overhead, due to

the compact representation offered by SPIHT. By exploiting the pro-

gressive bit plane reconstruction of images at the decoder, we it-

eratively refine the side information using motion estimation (ME)

between approximated spherical images. Numerical results demon-

strate that ME allows to efficiently exploit the correlation between

images, and hence improves compression performance. Finally, we

extend our scheme to scenarios with multiple cameras, where exper-

iments demonstrate the advantage of Wyner-Ziv decoding based on a

single reference image, over a scheme that rather codes the disparity

computed from multiple correlated images.
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2. DISTRIBUTED CODING SCHEME

We consider the scenario where omnidirectional cameras are dis-

tributed in a 3D scene. Each camera could be considered as a sam-

pling device for the plenoptic function, which represents the inten-

sity and chromaticity distribution of the light observed from every

position and direction in the 3D space.

In order to provide a compact representation of the scene, with-

out communication between cameras, we propose a scheme for dis-

tributed coding with side information. In particular, if we denote

by X and Y the correlated omnidirectional images generated by

two camera sensors, we are interested in the problem where a com-

pressed version of the image Y is used as side information for de-

coding the image X at the joint decoder. Both images X and Y
are encoded using a multiresolution transform and a progressive en-

coder. While the compressed image Y is sent to the central decoder

after additional entropy coding, the image X is further channel en-

coded using an LDPC code, and only the resulting syndrome bits are

sent to the central decoder. Under the assumption that images are

correlated, the syndrome bits are sufficient for a central decoder to

reconstruct the image X using the reference image Y . At the cen-

tral decoder the side information is refined using motion estimation

performed on the sphere [13], in order to compensate for the dis-

placement of objects captured from different viewpoints. The block

schemes for the independent encoders and the central decoder, are

given in Fig. 1.
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Fig. 1. Block schemes of encoders and decoder.

2.1. Slepian-Wolf Encoder

The encoding strategy of the Wyner-Ziv image X is now dis-

cussed in more details. As shown in Fig.1 (a), the image X is

first transformed using a wavelet decomposition, and then progres-

sively coded using a SPIHT encoder. In the SPIHT encoding, the

reconstructed image quality considerably degrades with errors in the

significant bits, since they convey the significance tree information.

Therefore, in the proposed Wyner-Ziv encoder significant bits are

entropy coded, and they are later used by the decoder to identify

the significant coefficients. On the other hand, sign and refinement

bits are encoded by the LDPC code and the corresponding syndrome

bits are sent to the decoder. In general, syndromes are calculated

by multiplying the bit plane sequence with the parity check matrix

H . In our scheme, each bit plane is encoded in multiple passes or

padded with zeros to match the column length in H . The crossover

probability p is used to determine the rate R of the LDPC code. Un-

der the assumption that the channel is a binary symmetric channel

(BSC), the capacity C of the channel is evaluated using the relation

1 − H(p). The rate R < C determines which parity check matrix

has to be used for a particular bit plane. In our scheme, we use irreg-

ular Gallager LDPC codes and we follow the procedure suggested

by Neal [12] to construct LDPC parity check matrix.

2.2. Slepian-Wolf Decoder

The joint decoding algorithm proposed in this paper is illustrated

in Fig.1 (b). The image Y is reconstructed independently into Ȳ ,

by arithmetic decoding, SPIHT decoding, and inverse wavelet trans-

form. The bit planes of X are decoded successively, and are used to

refine the side information by motion estimation on the sphere. Let

assume that the first l bit planes of X are successfully decoded and

the image reconstructed using the first l bit planes is denoted by X̄l.

Similarly, the decoder can reconstruct an approximation Ȳ l of the

image Y by decoding the first l bitplanes. The correlation between

images is then estimated by ME, performed on the approximated

images X̄l and Ȳ l. In more details, the ME is performed on the 2-

sphere as follows. The spherical image X̄l is initially divided into

blocks of solid angles. For each block in image X̄l a best match-

ing block in the mean square sense is selected in the image Ȳ l. The

displacement between the blocks is represented as a motion on the

sphere. The generated motion vectors are then used to compensate

the motion in the reconstructed image Ȳ , and form an approximation

of the image X . The motion compensated image undergoes a WT,

and the (l + 1)th bit plane is extracted using the significance tree

of X , which has been lossless encoded. The extracted (l + 1)th bit

plane finally serves as side-information for decoding the (l + 1)th

bit plane of X using the LDPC sum product algorithm. After the re-

finement bits are successfully decoded, the decoder applies inverse

wavelet transform to reconstruct the image X̄l+1, and the process

iterates until all bit planes are decoded.

As the expected number of errors in the most significant bit

planes is usually small, these bit planes are decoded without ME and

serve as an initialization point of the proposed method. The least

significant bit planes that carry more detailed scene information lead

to higher number of errors, with respect to the side information pro-

vided by the reference image. In the proposed method, the refine-

ment of side information with ME actually gives an improved cor-

relation model between corresponding bit planes in different images
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since it considers the local motion of objects, and therefore reduces

the number of errors that need to be corrected with the LDPC codes.

3. EXPERIMENTAL RESULTS

We evaluated the performance of our system on two synthetic spher-

ical images: Rhino and Room, shown in Fig.2 and Fig.3 respectively.

The Daub 9/7 integer wavelet filter is used to transform images X
and Y with three levels of decomposition and it is implemented by

the lifting scheme on unwrapped images. Adaptive arithmetic coder

is used to compress significant bits. Motion estimation is carried out

on blocks of size 4. In order to save on the computational complex-

ity, the search for the best block is limited to a window size of 64.

Motion estimation is carried out after decoding first two bit planes

of X , inferred directly from Ȳ .
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Fig. 2. Original Rhino images.
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Fig. 3. Original Room images.

We first compare the performance of the proposed DSC solution

to a separate SPIHT coding scheme by comparing the rate distor-

tion (RD) behavior of coding the image X , when the Y image is

coded at 1.7 bpp. Fig. 4 and Fig. 5 show the RD curve for Rhino

and Room images, respectively. As expected, coding with side in-

formation outperforms the independent coding of X , and the gain

can be as high as 7 or even 10 dB at low bit rate. The degradation of

coding gain in the high bit rate region is due to the fact that the bit

plane level correlation reduces as we move towards the least signifi-

cant bit planes, which requires low rate LDPC codes. This behavior

is quite expected since the fine details encoded in the least signifi-

cant bit planes are usually not correlated across different views. For

example, in the case of the Room images the correlation greatly de-

cays after the third bit plane. Therefore, we encode first three bit

planes with the proposed DSC scheme, while the rest of bit planes

are encoded independently, without DSC. Hence, the performance of

our scheme is slightly lower for the Room image than for the Rhino

image. The reconstructed Rhino and Room images X̄ are shown in

Fig.6 and Fig.7, respectively.
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Table 1. Error in refinement bits, with and w/o motion esti-

mation

Bit plane No. 3 4 5

With ME 67 106 277

Without ME 101 212 443

In order to evaluate the loss in performance due to separate en-

coding, we also compare the proposed scheme with joint encoding of

X and Y images (Fig. 4). Joint encoding, with multiresolution ME

at the encoder, obviously performs better than the distributed coding

solution but can only be performed with increased complexity at the

encoders. In the meantime, DSC performs better than the less com-

plex independent coding solution. Thus DSC framework is a trade

off between the complexity at the encoders and the performance.

Then, we compare our scheme with a DSC scheme based also on

SPIHT and LDPC, but without ME at the decoder (Fig. 4). It high-

lights the benefits of ME at the decoder, since it is clearly mandatory

for good reconstruction, especially for medium bit rates (i.e., for de-

coding of upper bit planes). The Table 1 clearly shows that the num-

ber of errors in the decoding of upper bit planes drastically increases

when ME is not activated at the decoder.

Finally, we extend our scheme to the coding of multiple im-

ages, where the decoder uses only one reference image. We consider

the scenario where three images X , Y and Z are observed and we
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Fig. 6. Reconstructed Rhino image X .
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Fig. 7. Reconstructed Room image X .

compare the overall RD performance in the two following schemes.

First, the image Y is independently coded and the images X and Z
are Wyner-Ziv coded as described above. The side information for

the images X and Z is generated from Ȳ and X̄ successively. Sec-

ond, the images Y and Z are encoded independently as reference

images, while the intermediate image X is encoded using Wyner-

Ziv coder. At the decoder, the side information for decoding X is

synthesized from Ȳ and Z̄ using motion compensated interpolation

and disparity estimation based on epipolar geometry for spherical

images. This case corresponds to the disparity-based approach, sim-

ilar to the one proposed in [8]. Fig. 8 compares the overall RD

performance for the three Rhino images, between the two consid-

ered cases. We can observe that the first scheme offers better per-

formance since it requires smaller transmission rate due to reduction

of the number of independently encoded images. The coding gain

at lower rate is 8 dB and 4 dB at higher rate. The results also sug-

gest that it is enough to transmit one view independently and other

views with Wyner-Ziv coding to achieve a very good overall perfor-

mance of the DSC method. Interestingly, such a solution permits to

eliminate the need for complex camera calibration that is generally

required for disparity estimation.

4. CONCLUSIONS

In this paper we have presented a transform-based DSC scheme for

compression of correlated images in omni-directional camera net-

works. The proposed scheme combines the efficiency of progressive

encoding and the correcting power of LDPC codes. The ME step

introduced at the decoder to refine the side information significantly

improves the performance of our scheme. The proposed method can

be easily extended to any number of cameras and does not need cam-

era calibration. Only one reference image is required for decoding

of multiple Wyner-Ziv images, leading to improved rate-distortion

performance compared to disparity-based method. Our future work

includes improvement of the statistical correlation model in order to

facilitate the estimation of LDPC parameters.
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