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ABSTRACT 

Although 2D-based face recognition methods have made great 
progress in the past decades, there are also some unsolved 
problems such as PIE. Recently, more and more researchers have 
focused on 3D-based face recognition approaches. Among these 
techniques, facial feature point localization plays an important role 
in representing and matching 3D faces. In this paper, we present a 
novel feature point localization method on 3D faces combining 
global shape model and local surface model. Bezier Surface is 
introduced to represent local structure of different feature points 
and global shape model is utilized to constrain the local search 
result. Experimental results based on comparison of our method 
and curvature analysis show the feasibility and efficiency of the 
new idea. 

Index Terms— facial feature point localization, global shape 
model, local surface model 

1. INTRODUCTION 
 
With the development of 3D acquisition system, the capture of 3D 
faces is becoming faster and cheaper, and face recognition based 
on 3D information is attracting more attention. One reason is that 
3D face recognition technologies are believed to have greater 
potential for higher recognition rate than 2D [1].Generally, a 3D 
face includes 105 -106 vertices given by their 
coordinates ( , , )x y z and each vertex has its texture 
information ( , , )R G B . Since it is hard to handle the entire set of 
data, we always extract some key points (far less than the number 
of vertices) called feature points, and use them to construct a visual 
model to describe and represent the expected structure of the 
object. Over the past decades, model-based approaches have been 
applied successfully in image understanding and computer vision. 
The famous examples are probably Active Shape Model (ASM) 
and Active Appearance Model (AAM). More information about 
them can be found in [8][9]. 

Due to the reason above, most 3D-based recognition 
approaches are concentrated on feature point extraction and using 
the relationship between feature points in face matching process 
[1][2][6]. Curved Surface Analysis [7] attempts to represent a local 
shape on the surface of 3D object using curvature analysis 
including Gaussian, minimum and maximum curvature etc. The 
main idea of the curvature analysis is to calculate the first-order 
and second-order derivatives of a certain feature point on object 
surface, and then using a function of these derivatives to describe 
the local structure. J.T. Lapreste and coworkers [3] presented a 
system that identifies facial feature points, such as center of eyes, 

tip of nose, lips, and chin. This method is based on the local 
curvature which is determined by means of the range data in a 
neighborhood. Gordon [4] gave a detailed study of range images in 
the human face recognition based on depth and face surface 
curvature features. The curvatures on a face surface are computed 
to find prominent features such as nose ridge and eye corners. 
Moreno et al. [5] proposed a 3D face recognition method by firstly 
performing a segmentation based on Gaussian curvature and then 
creating a feature vector based on the segmented regions. Lee and 
Shim [6] considered an approach by using “depth-weighted 
Hausdorff distance” and surface curvature information for 3D face 
recognition. However, when several feature points have similar 
local structure (curvature feature) but different positions e.g 
feature points on cheek, how to localize them is still a problem. 

In this paper, we propose a novel feature point localization 
method integrating both global shape model (GSM) and local 
surface model (LSM). The idea of combining global and local 
information is inspired by ASM[8][9]. However our method is 
quite different from ASM. Our contribution is: 1) propose a totally 
3D method to localize feature points on 3D object using the 
positions of vertices. 2) propose a new feature pattern—Bezier 
Surface Descriptor to describe and represent the geometric 
information on 3D object surface. 

2. OVERVIEW 

The proposed method is briefly overviewed shown as Fig1 (a), (b), 
which has two stages: modeling and localization. All of the 
training and testing 3D human faces are from “BJUT-3D Large-
Scale Chinese Face Database” [11]. For all the 3D faces, pre-
processing is required which includes smoothing, moving burrs, 
filling missing data, evenly re-sampling, and rectifying coordinates.  

There is no particular restriction of the number of feature 
points. However they should be sufficient to represent a 3D face. 
In this paper, we define 60 feature points, e.g eye corners, nose 
tips, nose ridges, lips and so on. The distribution of these feature 
points is shown in Fig.6. In the modeling stage, 60 feature points, 
which are semantically well-defined, are manually labeled. Then 
we normalize the global face shapes given by the feature points 
and then apply PCA analysis to get the GSM. The establishment of 
LSM for each feature point is exactly the same. We collect 
m m vertices on the 3D face around a certain feature point for all 
the training samples and regard them as control points of Bezier 
surface. The descriptive points on the smooth curved surface are 
obtained by Bezier functions. Finally, “local structure feature” 
which is derived by these descriptive points is used to set up LSM. 

Localization is an iterative procedure in which the first step is 
to roughly estimate the initial positions of feature points. Then we 
search the neighboring vertices around each feature point on 3D 
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face within a small range. The best-matching point is given by 
LSM and the feature point positions are updated. However, the 
new positions should be constrained by GSM so that the 
geometrical relationship of these points is reasonable [8]. This 
procedure is repeated until convergence. 

Fig. 1(a) Modeling stage          Fig. 1(b) Localization stage 

3. GLOBAL SHAPE MODEL (GSM) 
 
Since we have labeled the feature points for each image in the 
training set, the shape of 3D human face can be described as a 
vector 1 60 1 60 1 60( ,..., , ,..., , ,..., )Tx x y y z zX , where ( , , )T

j j jx y z is the 

coordinates of the jth feature point. Procrustes analysis [8][10] is 
used to eliminate the differences among face shapes caused by 
translation, rotation, and scaling parameters through minimizing 
(1). 

                           
2

1
( ) minN

i
T -iX Y                            (1) 

In (1), N is the number of training samples, iX is the shape 
of the ith sample, Y is a standard shape, and ( )T represents 
similarity transformation. “Normalized Shapes” are obtained by 
Procrustes analysis. Then, PCA analysis is introduced to setup 
GSM. Thus, we can approximate any shape of the training set 
using = +iX X b . Here X  is the mean shape of 3D face shown 
in Fig.2. The matrix consists of eigenvectors for covariance 
matrix of iX , and vector b defines a set of parameters of 
deformable model. The variance of the ith parameter, ib , over the 

training set is given by i . By applying limits of 3 i to the 

parameter ib , we can keep that the generated shape is similar to 
those in the training set.  

4. LOCAL SURFACE MODEL (LSM) 
 

4.1 Bezier Surface Descriptor 
 
The neighboring points in a small range of each feature point form 
a discrete surface and these points are called control points. The 
discrete surface is a descriptor of the local structure of different 
feature point. Fig3 (a) and (b) show the situations of cheek and 
nose tip respectively, where 11 11 control points on the face 
surface are selected and the corresponding feature point is located 
at the center of these points. Since different feature points have 
different local structure, we can use this information to distinguish 
them. 

In order to describe local surface as accurate as possible, we 
introduce the notion of Bezier Surface. Given 0 1n n discrete 
control points, a smooth curved surface called Bezier Surface is 
structured by (2), (3) where

0 1, 0 0 1 1(0 ,0 )i iP i n i n is the 

distance from a control point 0 1( , )i i to a user-defined base 
plane W and ( , )X s t is the distance from a descriptive point ( , )s t
on Bezier Surface to the base plane. Here, s and t are normalized 
to 0 1.

0 1

0 0 1 1 0 10 1

2
, , ,0 0

( , ) ( ) ( ) , ( , ) [0,1]n n
n i n i i ii i

X s t B s B t P s t      (2)                          

,
!( ) (1 ) (1 ) { , }

!( )!
i n i i n i

n i

n n
B z z z z z z s t

i i n i
    (3) 

In figure 4, 0 1 3n n and the base plane is X-Y. Initially, 
there are 16 control points shown as larger dots forming a 
transparent grid. Using (2), (3) we can obtain 49 descriptive points 
shown as smaller dots forming a gray grid. For 
example, 1,0P denotes the distance from control point (1,0) to the 

base plane. (0,0.5)X  represents the distance from descriptive 
point (0,0.5) to the base plane, where 0 and 0.5 are normalized 
coordinates.  Theoretically, there is no limit of the number of 
descriptive points because ,s t have continuous values. This is the 
reason why Bezier surface can approximate a set of discrete points 
accurately. However, the more the descriptive points the heavier 
the computational cost. In the next section we will focus on how to 
define a uniform base plane. 

        (a)                                       (b) 
Fig.3 The local geometrical feature of (a) cheek, (b) nose tip 

Fig.2 mean shape               Fig.4 Bezier surface 
 
4.2 Base Plane 
 
Let 0 1n n m and m is an odd number. The corresponding 
feature point is one member of control points and located at the 
center of the control points. In order to decide a unique base plane, 
another two conditions are satisfied: 1) The base plane pass 

through the feature point, 2)
2 21

0

m
ii

E P is minimized, 

where iP is the distance from the ith control point to base planeW .

Define the base plane W  as 0x y zx n y n z n D ,

where 0 ( , , )T
x y zn n n n is the normal direction of W and ( , , )Tx y z is 

the coordinates of points on W . 0n and D  are parameters to be 
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decided. Given the feature point 0 0 0 0( , , )TQ x y z and

the ith control point ( , , )T
i i i iQ x y z , the distance from iQ  to W is

calculated by (4) according to solid geometry. 

0
T

i i x i y i z iP x n y n z n D Q n D        (4) 

 From the first condition the feature point lies on the base 

plane W , we have 0 00 0
T

d Q n D , so 00
T

D Q n . The 

second condition can be converted to the following problem: 
2 21

0 000

T Tm
ii

E Q n Q n  is minimized s.t 0 1n       (5)             

Lemma: When (5) is satisfied, the corresponding 0n is the 
eigenvector associated with the smallest eigen-value of 

2 1
0 00

( )( )m T
Q i ii

Q Q Q QC .
Proof: 

2 2

2

2

2 21 1
0 0 0 0 00 0

1
0 0 0 00

1
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( )

(( ) ) (( ) )

( )( )

T Tm m T
i ii i

m T T T
i ii

T Tm T
i i Qi

E Q n Q n Q Q n

Q Q n Q Q n

n Q Q Q Q n n nC

When 0n is available by the lemma, the base plane is obtained. 

4.3 Gaussian Model 
 
We build a statistical model of the local structure around each 
feature point and during search period simply find the point which 
best matches the model. Here we use “nose tip” as an example to 
explain the modeling procedure. Suppose there are N  3D faces in 
the training set, we pick up m m points on the 3D face surface 
around “nose tip” (e.g Fig3) and regard them as “control points” of 
Bezier Surface. In this paper, 11m .Then base plane W is 
obtained by section 4.2. In order to avoid heavy computational 
cost, we calculate 2(2 1)m descriptive points by section 4.1(add 
one more descriptive point between two control points). Each of 
these descriptive points is described by ( , )X s t . These descriptive 

points are then reshaped to form a vector
2(2 1)j m

iZ R ,
where [1, ]i N [1,60]j , which means the local feature of 
the jth  point in the ith face (in this example, j  associate with 
“nose tip”). For each j , PCA analysis is applied across training 
faces to get a low dimensional representation of j

iZ where 95% 
energy of the covariance matrix is retained. The dimensions of the 
representation vary across different feature points according to the 
complexity of different local surface. If j

iZ is projected to a 

k dimensional space, a feature set 1 2{ , ,..., }j j j j
NZ Z ZZ ,

where j k
iZ R , is obtained for a given model point e.g “nose tip”. 

We assume that j
iZ is distributed as a multivariate Gaussian as (6), 

and estimate their mean jZ and covariance j  : 
1

1/ 2k/2

1 1( ) = exp{ ( ) ( )}
2(2 )

j j j T j j
i ij

p Z Z Z Z Z          (6) 

The matching criterion of a new feature pattern, j
sZ , to the 

jth model is given by (7) 
1( ) ( ) ( )j j j T j j

s s sf Z Z Z Z Z                                (7) 
This is the Mahalanobis distance and minimizing (7) is equivalent 
to maximizing the probability that j

sZ comes from the distribution. 

5. LOCALIZATION  

There are 3 steps in the localization stage: 1) Initial positions 
estimation. 2) Local search 3) Global shape constrain. 
1) The initial positions of feature points are roughly estimated 
shown as Fig. 5(a) with the help of the position of nose tip which 
is detected by curvature feature. 2) Local search is performed to 
find the “best-matching” point to every feature point. In this 
process, j

sZ is computed for all candidate points around 
the jth feature point on 3D human face and the “best-matching” 
point will minimize (7). 3) The positions of “best-matching” points 
should be constrained by GSM, in which the shape parameter ib is 

limited in the scope of [ 3 , 3 ]i i . The whole process 
mentioned above will be repeated until convergence. Typically, 
the algorithm will converge after 10-15 iterations. The localization 
process is illustrated in Fig5. 

                                (a)                        (b) 

                                (c)                        (d) 
Fig.5 Localization process from different viewpoint. (a) initial 
position (b) after 3 iterations (c) after 6 iterations (d) after 10 
iterations(converged)  

6. EXPERIMENTAL RESULTS 
 
We select 160 3D face images from “The BJUT-3D Large-Scale 
Chinese Face Database” and all of them are manually labeled 
using a consistent standard. Then 60 faces as training set are used 
to setup the model and the rest 100 images are used to test the 
accuracy of our method.  
In order to explain the accuracy of our method, we define 
“Relative Error” 
                   2

/search eyeC C Dis                      (8) 

In (8), ( , , )TC x y z is the position of a certain feature point which 
is manually labeled while searchC is the position of the same feature 
point automatically localized by our method. eyeDis is the distance 
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between two outer eye corners of this person. The distribution of 
feature points is shown in a 2D image (Fig.6) with serial numbers 
labeled aside. Comparisons of our method, Gaussian Curvature, 
Minimum Curvature, and Maximum Curvature are given in Fig.7, 
where X axis stands for serial number of feature points and Y axis 
for the average relative error among 100 testing images. It should 
be emphasized that, for the sake of equity, we introduce GSM into 
these curvature methods. That means, the new positions gained by 
local search using curvature features are constrained by GSM. 
Actually, curvature methods alone can not localize the feature 
points on the cheek, because the curvature analysis of these feature 
points will yield extremely similar results. So they can not 
distinguish with each other.  

Feature points 1-8 are on the eyebrow. The local surfaces of 
these points have no definite structure and they vary drastically for 
different people. Accordingly, the accuracy of points 1-8 is the 
worst compared to other feature points. Feature points 9-25 are on 
the cheek. The curvature descriptors of these points are prone to be 
similar. Nevertheless, LSM is better at distinguishing the small 
variations of local patterns. The local structures of 26-60 are much 
easier to identify. These points include eye corners, nose ridge, 
nose-wing, nose-tip, and mouth tips. It can be shown from Fig.7 
that our method outperforms other methods. 

7. CONCLUSIONS 
 
In this paper, a novel feature point extraction method on 3D face 
image is proposed. In the modeling stage, GSM and LSM are setup. 
GSM is used to represent the global shape of 3D face. This 
information helps us to discard those non-face shapes easily, and 
thus constrains the new positions given by local search result. 
LSM is a descriptor of how the local structure looks like. With the 
help of LSM, small variations are detected and different kinds of 
local surfaces are distinguished. Mahalanobis distance is adapted 
to measure the distance from a new pattern to a local surface 
model. Experimental results show that our method is better than 
the conventional curvature-based methods. In the LSM, users 
should define 2 parameters: 1) how many control points? 2) how 
many descriptive points? In this paper, 11*11 control points are 
selected and approximately 4 times amount of descriptive points 
are calculated. There is no strict criterion for the selection of the 
two parameters, however control points should be enough to 
describe the local structure and too many descriptive points should 
be avoided regarding the computational complexity. Further, in 
order to achieve illumination invariance, we do not use textual 
features. But from the experiment above, structure information is 
sufficient to localize the feature points correctly. 
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Fig.6 Distribution of feature points 

 
Fig.7 Accuracy of localization 
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