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ABSTRACT
The geometric features of images, such as edges, are difficult
to represent. When a redundant transform is used for their
extraction, the compression challenge is even more difficult.
In this paper we present a new rate-distortion optimization al-
gorithm based on graph theory that can encode efficiently the
coefficients of a critically sampled, non-orthogonal or even
redundant transform, like the contourlet decomposition. The
basic idea is to construct a specialized graph such that its min-
imum cut minimizes the energy functional. We propose to ap-
ply this technique for rate-distortion Lagrangian optimization
in subband image coding. The method yields good compres-
sion results compared to the state-of-art JPEG2000 codec, as
well as a general improvement in visual quality.

Index Terms— subband image coding, rate - distortion
allocation

1. INTRODUCTION

The compression of natural images is still a challenge for the
researchers and industry. The geometric features of images,
such as edges, characterized by abrupt changes in pixel in-
tensity, are difficult to represent. The wavelet transform has
been succesfully used for image representation [1], due to its
energy compaction capacities and compression efficiency [2].
Unfortunately, wavelets are good tools only for catching point
discontinuities of the signal. They fail in the case of line and
curve singularities, so often present in images. This is due
to the fact that standard wavelet transforms applied to images
are separable.
In order to overcome the problem of edge representation,

Minh N. Do and Martin Vetterli have defined a new family of
geometrical wavelets, called contourlets [3]. Thanks to them,
one can represent the class of smooth images with discontinu-
ities along smooth curves in a very efficient and sparse way.
The theory of geometrical wavelets has progressed in many
directions, giving the definitions of wedgelets [4], beamlets
[5], curvelets [6], directionlets [7] and others [8, 9], as well as
their corresponding fast transforms.

The main advantage of these new decompositions lies in
the fact that they possess all the nice properties of classical
wavelets, that is space localization and scalability (catching
global as well as local characteristics of a signal in a single
bitstream) and, additionally, the geometrical wavelet trans-
forms have strong directional characteristics. They can be
successfully used in image segmentation and noise removal,
as well as in image compression: as shown in [10], the codec
based on wedgelets gives better performance in image com-
pression than the JPEG2000 standard.

In this paper we present a new rate-distortion optimiza-
tion algorithm based on graph theory that can encode effi-
ciently the contourlet coefficients. As described in [11], prob-
lems that arise in computer vision can be naturally expressed
in terms of energy minimization. The basic idea is to con-
struct a specialized graph for the energy function to be mini-
mized such that the minimum cut on the graph also minimizes
the energy (either globally or locally). The minimum cut, in
turn, can be computed very efficiently by max flow algorithms
[12]. These methods have been successfully used for a wide
variety of vision problems [13, 14], including image restora-
tion, stereo and motion, image synthesis, image segmentation,
voxel occupancy, multicamera scene reconstruction and med-
ical imaging. We propose to use the graph-cut mechanism for
the minimization of the rate-distortion Lagrangian function.
In order to do this, we have designed the graph starting from
the subbands given by the contourlet decomposition, where
the nodes are given by the spatial subbands and the edges
between them are given by their spatial position. As it will
be shown by the experimental results, the method gives good
compression results compared to the state-of-art JPEG2000
codec, as well as a general improvement in visual quality.

This paper is organised as follows: Section 2 describes
the interest of contourlets for image compression. The graph-
cut rate-distortion algorithm used for contourlet coefficients
coding is presented in Section 3. Some experimental results
are presented in Section 4. Finally, conclusions and future
work directions are given in Section 5.
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2. CONTOURLETS IN IMAGE COMPRESSION

In [3] is presented a geometrical transform that preserves the
interesting features of classical wavelets, namely the multires-
olution and local characteristics of the signal and at the ex-
pense of a spatial redundancy, it better represents the direc-
tional features of the image. As shown in Fig.1, the trans-

Fig. 1. Contourlet filter bank

form is a multiscale and directional decomposition using a
combination of a Laplacian pyramid (LP) and a directional
filter bank (DFB). Bandpass images from the LP are passed
to a DFB so that directional information can be retrieved.
This results into a filter bank structure, named contourlet fil-
ter bank, which decomposes images into directional subbands
at multiple scales. As its redundancy is given only by the
LP transform, it has an upper limit of 4/3, which makes the
scheme more appropriate for compression than other geomet-
rical transforms. Another reason for which we have consid-
ered this scheme is that contourlets can be approximated with
less coefficients than the wavelets; that is, for a contourlet
basis, the approximation error for keeping only the M most
significant coefficients is:

‖f − fMcontourlet
‖ = O((logM)3M−2) (1)

which is smaller than the one obtained on the wavelet basis:

‖f − fMwavelet
‖ = O(M−1). (2)

3. GRAPH-CUT RATE-DISTORTION ALGORITHM

As mentioned in the introduction, the max-flow/min-cut algo-
rithm has been successfully used in computer vision for solv-
ing different energy minimization problems. In this paper we
propose to apply this technique for rate-distortion Lagrangian
optimization in subband image coding.
Generally, for a graph G = (V,E), where V /E is the set

of vertices/edges, which have two special vertices (terminals),
q1, q2 ∈ V , a q1−q2 cut is defined as a partition of the vertices
in V into two disjont sets Q1 and Q2 such that q1 ∈ Q1 and
q2 ∈ Q2. The cost of the cut is given by the sum of costs c of
all edges linking Q1 to Q2 (the cut-edges in Fig.2), i.e:

C(Q1, Q2) =
∑

u∈Q1,v∈Q2,(u,v)∈E

c(u, v) (3)

Fig. 2. Two-level spatial decomposition scheme (a) and the corre-
sponding graph-cut repartition of two quantizers (b) (q1 partition in
blue, q2 partition in orange, where the regular edges are with full
lines and the terminal edges with dashed ones).

The multi-terminal min-cut problem can be formulated as
follows: given an undirected graphG having V = N ∪Q ver-
tices (where N denote the regular nodes and Q the terminal
ones), E edges (each having associated a cost) , find a parti-
tioning of the regular nodes in the graph such that: (a) each
partition is connected to one terminal node (i.e. all the regu-
lar vertices in a partition are connected to the same terminal
node) and (b) the sum of the costs of the edges between any
two disjoint partitions (denoted by C) is minimal. A simple
approach for this graph can be obtained by seeing as the reg-
ular (planar) vertices the decomposition subbands (N ), which
are connected between them following their 2D geometrical
position (E−N×Q), and each terminal node being connected
to all the vertices (N ×Q) (Fig.2). So one can distinguish two
connection types: one between regular vertices and the other
one between the terminal nodes and the vertices. The mini-
mum cut corresponds to the cut with the smallest cost C; as
proved in [12],C can be found as the solution of the maximal-
flow for the given graph. As the graph has been geometrically
designed, we define in the following the costs associated to
the two types of edges, which coincide with the definition of
the energy function to be minimized.
Consider the problem of coding an image at a maximal

rate Rmax with a minimal distortion D. Each image consists
of a fixed number of coding units (e.g., in our case, the con-
tourlet spatial subbands), each of them coded with a different
quantizer qi, qi ∈ Q whereQ is the quantizers set. LetDi(qi)
be the distortion of subband i when quantized with qi, and let
Ri(qi) be the number of bits required for coding it. The prob-
lem can now be formulated as: findmin

∑
i Di(qi), such that∑

i Ri(qi) = R ≤ Rmax.
In Lagrange-multiplier framework, this constrained opti-

mization problem can be written as:

min
∑

i

(Di(qi) + λRi(qi)) , R ≤ Rmax (4)

where the choice of λ measures the relative importance
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of distortion, respectively rate for the optimization and which
can be determined using a binary search. The advantage of
problem formulation in Eq. (4) is that the sum and the mini-
mum operator can be exchanged to:

∑
i

min (Di(qi) + λRi(qi)) , R ≤ Rmax (5)

This formulation obviously reveals that the global optimiza-
tion can now be carried out independently for each spatial
subband, making an efficient implementation feasible.
The distortion D between the original image x and the

quantized one, x̂ can be written as the L2 norm, i.e. D =
‖x − x̂‖2. If in the reconstructed image x̂ we highlight the
contribution of each subband, x̂ =

∑
i x̂i, where x̂i is the

contribution per subband, then we can also write the image
in a similar way, x =

∑
i xi. However, here xi is com-

pletely arbitrary. In the case of a linear basis, it may become
xi =

∑
k 〈x, ẽk,i〉 ek,i, where ẽk,i, ek,i are the analysis, re-

spectively synthesis elements of the biorthogonal basis. Then
we have:

D =

∥∥∥∥∥
∑

i

(x̂i − xi)

∥∥∥∥∥
2

=
∑
i,i′

〈x̂i − xi, x̂i′ − xi′〉 (6)

In a first approximation, we can consider only the diago-
nal terms, i.e.:

D ∼=
∑

i

‖xi − x̂i‖
2 (7)

which amounts at estimating the distortion between the con-
tribution to the image and to the quantized image only of the
ith subband. This means we can reconstruct the image only
from ith subband coefficients (the others being set to zero).
In [11], O. Veksler et al. propose two graph-cut based

algorithms able to reach a minimum for an energy function of
the form:

min E(f) = Edata(f) + Esmooth(f) (8)

where Esmooth is a smoothness constraint, while Edata mea-
sures the distortion introduced by the partitioning f with re-
spect to the original data. Without taking into consideration
the rate constraint, one can easily translate the Eq.(7) inEdata

(i.e. Edata = D). Because Edata can be arbitrary chosen,
with only the positiveness constraint, we add to it the rate fac-
tor, that is:

Edata =
∑

i

(Di(qi) + λRi(qi)) (9)

We can define:

Esmooth =
∑

n1,n2∈N

Vn1,n2
(qn1

, qn2
) (10)

whereN represents the 2D neighborhood system of the nodes
and Vn1,n2

(qn1
, qn2

)measures the cost of assigning the quan-
tizers qn1

, qn2
to the adjacent nodes n1, n2. We define V as

the Potts interaction penalty, i.e. :

V = βT (qn1
	= qn2

) (11)

where T is a boolean operator (e.g. its value equals 1 if the ar-
gument is true and 0 otherwise) and β is a real constant which
enforces or diminues the smoothing. As can be seen, the defi-
nition of Esmooth is consistent, as for two strongly correlated
subbands the same quantizer choice is imposed. Moreover,
it is a metric on the quantizers space, so the q − expansion
algorithm [11] can be used in order to minimize E. As one
can remark, for a terminal node edge (i.e. link between a
quantizer q and a given subband vertex i) the cost is given
by the sum between the distortion induced by that quantizer
to the image and the number of bits needed to transmit the
quantized subband i, Di(qi) + λRi(qi). For a neighborhood
edge (i.e. link between two neighbor vertices), the cost is 0
if the two nodes are quantized at the same scale or β other-
wise. Moreover, this cost is dynamically computed for each
possible partitioning of the graph.
Once the graph construction and the energy function to

be minimized have been defined, the algorithm starts with an
initial (random) partitioning f (where f is a set of quantiz-
ers, f : Q → Q) of the graph. For each quantizer q ∈ Q

finds f̂ as the quantizers repartition which minimizes E(f ′)

(i.e. f̂ ← min E(f ′)) among f ′ within one q − expansion
of f (where f ′ denotes the possibilites of linking the terminal
node q to the planar nodes that are not linked to it in the initial
f partitioning). This operation is repeated this until E(f̂) no
longer decreases. f̂ is efficiently found as being the best quan-
tizer repartition, because its cost corresponds to a minimal-cut
over the constructed graph. The computation complexity is
polynomial; however, in practice the running time is nearly
linear for graphs with many short paths between two terminal
nodes, such as the one we have modelled for our problem.

4. EXPERIMENTAL RESULTS

For our simulations, we have considered two representative
test images: “Zoneplate” (512x512 pixels) and “Mandrill”
(512x512 pixels), which have been selected for their texture
characteristics.
We have used dead-zone scalar quantization, with q ∈

{20, . . . , 210} and a 5-level contourlet decomposition, where
the coarsest three decomposition levels consists in a 9/7 sep-
arable wavelet transform (i.e. 3 directions) and the finest two
levels are represented with a 16 and respectively 32 bands di-
rectional filter. One can remark that the algorithm can also
be used with vector quantizers and the coefficient space be
further partitioned into macroblocks. As shown in Fig.[3, 4],
both the numerical and visual quality are improved; for the
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Fig. 3. Zoneplate image compressed at 0.2 bpp with JPEG2000
(PSNR = 11.12dB)

Fig. 4. Zoneplate image compressed at 0.2 bpp with the proposed
method (PSNR = 12.66dB)
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Fig. 5. Rate-distortion comparison for Mandrill image

same transmission rate (e.g. 0.2 bpp), one can remark more
than 1.5 dB improvement, even though our method employs
a redundant transform. Similar results are also depicted in
Fig. 5. Note that for rate estimation in the allocation al-
gorithm we have used a simple (non-contextual) arithmetic

coder [15], while JPEG2000 codec uses a highly optimized
contextual coder.

5. CONCLUSION

In this paper we have presented a graph-based method for
rate-distortion optimization in subband image coding. The
experiments show that it can encode efficiently the contourlet
coefficients at low bitrates, improving both the visual and nu-
merical quality. Moreover, the proposed method can be fur-
ther used with vector quantizers and the graph design could
be developed to represent the subbands at macroblock level.
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