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ABSTRACT 

JPEG optimization strives to maximize the best rate distortion 
performance while remaining faithful to the JPEG syntax. Given an 
image, if soft decision quantization (SDQ) is applied to its DCT 
coefficients, then Huffman table, quantization step sizes and SDQ 
coefficients are three free parameters over which a JPEG encoder 
can optimize. In this paper, we first propose a novel algorithm to 
find the optimal SDQ coefficient indices in the form of run-size 
pairs among all possible candidates given that the other two 
parameters are fixed. Based on this algorithm, we then formulate 
an iterative algorithm to jointly optimize the run-length coding, 
Huffman coding and quantization step sizes. The proposed 
iterative algorithm achieves a compression performance better than 
any previously known JPEG compression results and even exceeds 
the quoted PSNR results of some state-of-the-art wavelet-based 
image coders like Shapiro’s embedded zerotree wavelet algorithm 
at the common bit rates under comparison.

Index Terms— Image coding, optimization methods, rate 
distortion theory, dynamic programming.

1. INTRODUCTION 

JPEG [1] is a popular DCT-based still image compression 
standard. The popularity of the JPEG coding system has motivated 
the study of JPEG optimization schemes [2]-[4] which remain 
faithful to the JPEG syntax. This kind of decoder-compatible JPEG 
optimization is of great commercial value because the optimized 
JPEG images take less memory to store and less time to transmit 
while the JPEG decoders keep unchanged; it will find more and 
more applications in wireless communications.   
    A JPEG encoder consists of three basic steps – DCT transform, 
quantization and entropy coding, where the entropy coding 
consists of the run-length coding and Huffman coding. This 
framework offers significant opportunity to apply rate-distortion 
(R-D) consideration at the encoder side. It is evident that one can 
optimize JPEG encoding by finding a good hard-decision 
quantization table and Huffman coding tables. What less obvious 
is that one can also optimize JPEG encoding by optimizing the 
image data.  Depending on the stage where the image data are 
during the whole JPEG encoding process, the image data take 
different forms as shown in Figure 1. Before hard decision 
quantization, they take the form of DCT coefficients; after hard 
decision quantization, they take the form of DCT indices, i.e., 
quantized DCT coefficients; after zig-zag sequencing and run-
length coding, they take the form of run-size pairs followed by 
integers specifying the exact amplitude of DCT indices within 

respective categories (such integers are called in-category indices 
in this paper). Although the JPEG syntax allows the quantization 
tables to be customized at the encoder, typically some scaled 
versions of the example quantization tables given in the standard 
[1] (called default tables in this paper) are used. The scaling of the 
default tables is suboptimal because the default tables are image-
independent. Even with an image-adaptive quantization table, 
JPEG must apply the same table for every image block, indicating 
that potential gain remains from optimizing the coefficient indices, 
i.e., DCT indices. Since DCT indices can be equivalently 
represented as run-size pairs followed by in-category indices 
through run-length coding, we shall simply refer to coefficient 
index optimization as run-length coding optimization in parallel 
with step size and Huffman coding optimization. In this paper, we 
not only propose a very neat, graph-based run-length code 
optimization scheme, but also present an iterative optimization 
scheme which jointly optimizes the run-length coding, Huffman 
coding and quantization step sizes as shown in Figure 1.   
    The rest of this paper is organized as follows. We formulate our 
joint optimization problem in Section 2 and give the solutions in 
Section 3. Detailed experimental results are given in Section 4 and 
Section 5 concludes this paper.     

Figure 1. Block diagram of the proposed joint optimization scheme 
where the run-length coding, Huffman coding and step size 
updating are jointly optimized on an image-adaptive basis. 

2. FORMAL PROBLEM DEFINITION 

We now formulate our joint optimization problem, where the 
minimization is done over all the three free parameters in baseline 
JPEG. We only consider the optimization of AC coefficients in this 
paper and the optimization of DC coefficients can be considered 
separately using a trellis structure.  

Given an input image 
0I  and a fixed quantization table Q in the 

JPEG encoding, the coefficient indices completely determine a 
sequence of run-size pair followed by in-category indices for each 
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8x8 block through run-length coding, and vice versa. Our problem 
is posed as a constrained optimization over all possible sequences 
of run-size pairs (R,S) followed by in-category indices ID, all 
possible Huffman tables H, and all possible quantization tables Q 
                              ]),,(,[min 0,),,,( QQHIDSR

IDSRId

                     subject to     [( , ), ] budgetr R S H r≤                              (1) 

or equivalently 
                              ]),,[(min

,),,,(
HSRr

QHIDSR
                        

                     subject to   
budgetQ dIDSRId ≤]),,(,[ 0

                  (2)      

where ]),,(,[ 0 QIDSRId  denotes the distortion between the original 

image 
0I  and the reconstructed image determined by (R,S,ID) and 

Q over all AC coefficients, and [( , ), ]r R S H  denotes the 
compression rate for all AC coefficients resulting from the chosen 
sequence (R,S,ID) and the Huffman table H. 

budgetr  and 
budgetd  are 

respectively the rate constraint and distortion constraint. With the 
help of the Lagrange multiplier, we may convert the rate-
constrained problem or distortion constrained problem into the 
following unconstrained problem  
                 ]}),,[(]),,(,[)({min 0,),,,(

HSRrIDSRIdJ QQHIDSR
⋅+= λλ         (3)                               

where the Lagrangian multiplier  is a parameter that represents the 
tradeoff of rate for distortion, and J( ) is the Lagrangian cost. This 
type of optimization falls into the category of so-called fixed slope 
coding scheme advocated in [5].    
     It is informative to compare our joint optimization problem 
with the joint thresholding and quantizer selection in [4]. On one 
hand, both of them are an iterative process aiming to optimize the 
three parameters jointly. On the other hand, our scheme differs 
from that considered in [4] in two distinct aspects. First, we 
consider the full optimization of the coefficient indices or the 
sequence (R,S,ID) instead of a partial optimization represented by 
dropping only insignificant coefficient indices as considered in [4]. 
As we shall see in the next section, it turns out that the full 
optimization has a very neat, computationally effective solution. 
Second, we do not apply any time-consuming quantizer selection 
schemes to find the R-D optimal step sizes in each iteration. 
Instead, we use the default quantization table or an initial 
optimized quantization table and update the step sizes efficiently in 
each iteration for local optimization of the step sizes. 

3. PROBLEM SOLUTIONS 

The rate-distortion optimization problem (3) is a joint optimization 
of the distortion, rate, Huffman table, quantization table, and 
sequence (R,S,ID). To make the optimization problem tractable, we 
propose an iterative algorithm that chooses the sequence (R,S,ID), 
Huffman table, and quantization table iteratively to minimize the 
Lagrangian cost of (3), given that the other two parameters are 
fixed. Since a run-size probability distribution P completely 
determines a Huffman table, we use P to replace the Huffman table 
H in the optimization process. The iteration algorithm can be 
described as  

1) Initialize the original distribution 
0P  from the given image 

0I  and a quantization table 
0Q . Set 0=t , and specify a 

tolerance  as the convergence criterion. 

2) Fix 
tQ  and 

tP  for any 0≥t . Find an optimal sequence 

),,( ttt IDSR   that achieves the following minimum 

]}),,[(]),,(,[)({min 0),,( tQIDSR
PSRrIDSRIdJ

t
⋅+= λλ

     Denote ]),,[(]),,(,[ 0 tQ PSRrIDSRId
t

⋅+λ  by )(λtJ . 

3) Fix ),,( ttt IDSR . Update 
tQ  and 

tP  into 1+tQ  and 1+tP , 
respectively so that 1+tQ  and 1+tP  together achieve the 
following minimum 

      ]}),,[(]),,(,[)({min 0,
PSRrIDSRIdJ ttQtttPQ

⋅+= λλ . 

4) Repeat Steps 2) and 3) for ,2,1,0=t  until 

ελλ ≤− + )()( 1tt JJ . Then, output ),,( 111 +++ ttt IDSR , 1+tQ
and 1+tP . 

     Since the Lagrangian cost function is non-increasing at each 
step, convergence is guaranteed. The core of the iteration algorithm 
is Step 2) and Step 3), i.e., finding the sequence (R,S,ID) to 
minimize the Lagrangian cost J( ) given Q and P, and updating the 
quantization step sizes with the new indices of the image. These 
two steps are addressed separately as follows.  

3.1 Graph-based run-length coding optimization 

As mentioned in Section 2, JPEG quantization lacks local 
adaptivity even with an image-adaptive quantization table, which 
indicates that potential gain remains from the optimization of the 
coefficient indices themselves. This gain is exploited in Step 2). 
Optimal thresholding in [3],[4] only considers a partial 
optimization of the coefficient indices, i.e., dropping less 
significant coefficients in the R-D sense. In this paper, we propose 
an efficient graph-based optimal path searching algorithm to 
optimize the coefficient indices fully in the R-D sense. It can not 
only drop the less significant coefficients, but also can change 
them from one category to another - even changing a zero 
coefficient to a small nonzero coefficient is possible if needed in 
the R-D sense. Since given the Lagrangian cost J( ) is block-wise 
additive given Q and P, the minimization in Step 2) can be solved 
in a block by block manner. That is, the optimal sequence (R,S,ID)
can be determined independently for every 8x8 image block. Thus, 
in the following, we limit our discussion to only one 8x8 image. 
    Let us define a graph with 65 nodes (or states). As shown in 
Figure 2, the first 64 states, numbered as 63,,1,0=i , correspond 
to the 64 coefficients of an 8x8 image block in zigzag order. The 
last state is a special state called the end state, and will be used to 
take care of EOB (end-of-block). Each state )63( ≤ii  may have 
incoming connections from its previous 16 states )( ijj < , which 
correspond to the run, R, in an (R,S) pair (in JPEG syntax, R takes 
value from 0 to 15). The end state may have incoming connections 
from all the other states with each connection from state )62( ≤ii
representing the EOB code after the thi  coefficient. State 63 goes 
to state end without EOB code. For a given state )63( ≤ii  and its 
predecessor i-r-1 ( 0 15r≤ ≤ ), there are 10 parallel transitions 
between them which correspond to the size group, S, in an (R,S) 
pair. For simplicity, we only draw one transition in the graph 
shown in Figure 2; the complete graph needs the expansion of S. 
For each state i where i>15, there is one more transition from state 
i-16 to state i which corresponds to the pair (15, 0), i.e., ZRL (zero 
run length) code. We assign a cost for each transition (r, s) from 
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state i-r-1 to state i as the incremental Lagrangian cost of going 
from state i-r-1 to state i when the thi  DCT coefficient is quantized 
to size group s (i.e., the coefficient index needs s bits to represent 
its amplitude) and all the r DCT coefficients are quantized to zero. 
Specifically, this incremental cost is equal to  
                    )),(log( 2

2
1

2 ssrPIDqCC iii

i

rij
j +−⋅+⋅−+

−

−=

λ            (4)                         

where 63,,2,1, =jC j
 is the thj  DCT coefficient, 

iID  is the in-

category index corresponding to the size group s that gives rise to 
the minimum distortion to 

iC  among all in-category indices within 

the category specified by the size group s, and 
iq  is the thi

quantization step size. With these definitions, every possible run-
size pairs of an 8x8 block corresponds to a path from state 0 to the 
end state with a Lagrangian cost. Therefore, we may employ a fast 
dynamic programming algorithm to find the optimal path from 
state 0 to state end among ALL possible paths which results in the 
minimum Lagrangian cost. The readers are referred to [6] for more 
details. 

Figure 2.  Graphic representation of sequences of run-size pairs of 
an 8x8 block, where s takes values from 0 to 10 in (15, s) and 
values from 1 to 10 in other cases.  

   The above procedure is a full dynamic programming method, and 
always gives us the optimal solution. To further reduce its 
computational complexity, we can modify it slightly. In particular, 
we do not have to compare the incremental costs among the 10 or 
11 parallel transitions from one state to another state. Instead, it 
may be sufficient for us to compare only the incremental costs 
among the transitions associated with size roup s-1, s, and s+1, 
where s is the size group corresponding to the output of the given 
hard-decision quantizer. Transitions associated with other groups 
most likely result in larger incremental costs.  

3.2 Optimal quantization table updating  

To update the quantization step sizes in Step 3), we need to solve 
the following minimization problem 

]),,(,[min 0 QQ
IDSRId

Let 
,i jC  denote the DCT coefficients of 

0I  at the thi  position in the 

zigzag order of the thj  block. The sequence (R,S,ID) determines 
DCT indices, i.e., quantized DCT coefficients normalized by the 
quantization step sizes. Let 

jiK ,
 denote the DCT index at the thi

position in the zigzag order of the thj  block obtained from 
(R,S,ID). Then, the reconstructed DCT coefficient at the thi

position in the zigzag order of the thj  block is given by 
jii Kq ,⋅ . 

With the help of 
,i jC  and 

jii Kq ,⋅ , we can rewrite  

]),,(,[ 0 QIDSRId as                                                              

                 
= =

⋅−=
63

1

_

1

2
,,0 )(]),,(,[

i

BlkNum

j
jiijiQ KqCIDSRId      (5) 

where Num_Blk is the number of 8x8 blocks in the given image. It 
follows that the minimization of ]),,(,[ 0 QIDSRId  can be achieved 

by minimizing independently the inner summation of (5) for each 
63,,2,1=i . Our goal is to find a set of new quantization step 

size  )631(ˆ ≤≤ iqi
 to minimize 

                  
=

=⋅−
BlkNum

j
jiijiq

iKqC
i

_

1

2
,,ˆ

63,,1)ˆ(min                         (6) 

Equation (6) can be written as  
       

=
=⋅+⋅⋅−

BlkNum

j
jiijiijijiq

iKqKqCC
i

_

1

2
,

2
,,

2
,ˆ

63,,1ˆˆ2min       (7)                         

The minimization of these quadratic functions can be evaluated by 
taking derivative of (7) with respect to 

iq̂ . The minimum of (6) is 
obtained when 

                 
63,,1ˆ _

1

2
,

_

1
,,

=
⋅

=

=

= i
K

KC
q BlkNum

j
ji

BlkNum

j
jiji

i

                     (8) 

The step sizes in Step 3) can be updated accordingly. 

4. EXPERIMENTAL RESULTS 

The proposed algorithm can be configured flexibly based on user’s 
requirement. We may optimize the run-size pairs only. 
Alternatively, we may run the joint optimization algorithm 
iteratively. Both configurations can start with the default 
quantization table or an initially optimized quantization table. In 
the latter case, we choose the fast algorithm in [2] to generate an 
initially optimized quantization table to start with. Table I 
compares the PSNR values of different settings of the proposed 
algorithm as well as the reference methods for 512x512 images 
Lena and Barbara. Figures 3 plots the PSNR against the bit rate for 
image Barbara. A customized Huffman table is used in the last 
entropy encoding stage like the optimal adaptive thresholding 
scheme in [4]. Several remarks are in order. First, the optimal 
adaptive thresholding scheme in [3], [4] is a subset of the proposed 
run-length coding optimization. Therefore, the proposed run-length 
coding optimization scheme outperforms the optimal adaptive 
thresholding scheme for both images under any bit rates as 
expected. Second, quantization table optimization plays a less role 
at low bit rates since more coefficients are quantized to zero at low 
bit rates. The proposed joint optimization scheme with an initial 
scaled default quantization table achieves better results that the 
joint optimization scheme in [4] at low bit rate(s), which obtained 
the best JPEG compression results before this paper. Third, the 
proposed algorithm with an initial optimized quantization table 
outperforms the joint optimization scheme in [4] for all bit rates 
under comparison and even exceeds the quoted PSNR results of 
some state-of-the-art wavelet-based image coders like Shapiro’s 
embedded zerotree wavelet algorithm [8] for some complicated 
image like Barbara at the bit rates under comparison.  
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  Table I. Comparison of PSNR values with different optimization methods (512x512 Lena and Barbara) 

Image Rate  
(bpp) 

Customized 
baseline 

JPEG 

Adaptive 
threshold 

[3] 

Proposed 
run-length 

coding 
opt. 

Default  
q-tbl + 

proposed 
joint opt. 

Initially 
optimized 

q-tbl + 
proposed 
joint opt. 

Joint 
optimiza-
tion [4] 

Baseline 
wavelet 

transform 
coder [7] 

Embedded 
zerotree 
wavelet 

algorithm 
[8] 

.25 31.63 32.1 32.21 32.37 32.47 32.3 33.17 33.17 

.50 34.90 35.3 35.43 35.80 36.04 35.9 36.18 36.28 

.75 36.62 37.2 37.32 37.68 38.14 38.1 38.02 N/A 
Lena 

1.00 37.91 38.4 38.68 39.26 39.63 39.6 39.42 39.55 
.25 25.31 25.9 26.09 26.93 27.04 26.7 26.64 26.77 
.50 28.34 29.3 29.62 30.66 30.94 30.6 29.54 30.53 
.75 31.02 31.9 32.30 33.14 33.82 33.6 32.55 N/A 

Barbara 

1.00 33.16 34.1 34.52 35.23 36.07 35.9 34.56 35.14 

   We now present some computational complexity results of the 
proposed algorithm. As mentioned in Section 3, given a state and a 
predecessor, we may find the minimum incremental cost by 
comparing all the 10 size groups or 3 size groups (i.e., the size 
group from the hard-decision quantizer and its two neighboring 
groups). Our experiments show that these two schemes achieve the 
same performance in the region of interest. Only when  is 
extremely large, we see that the results from comparing 10 size 
groups slightly outperform the results from comparing 3 size 
groups. These large values of  are useless in practical situations. 
Therefore, all the experimental results in this paper are obtained by 
comparing 3 size groups. Table II tabulates the CPU time in 
second for the C code implementation of the proposed algorithm 
on a Pentium PC in one iteration with 512x512 Lena image. It can 
be seen that our algorithm is very efficient compared to the scheme 
in [4] (the scheme in [4] takes several dozens of seconds for one 
iteration). When the proposed algorithm is applied to web image 
acceleration, it takes around 0.2 second to optimize a typical size 
(300x200) JPEG color image with 2 iterations.  
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Figure 3. PSNR performance of different settings of the proposed 
algorithm against reference methods for 512x512 Barbara. 

Table II. CPU time of the proposed algorithm on a Pentium PC 
(512x512 Lena)  

Settings Float DCT Fast integer DCT 
Comparing 3 size groups 1.5 s 0.3 s 

Comparing 10 size groups 2.0 s 0.7 s 

5. CONCLUSIONS 
In this work, we have presented a graph-based R-D optimal 
algorithm for JPEG run-length coding. It finds the optimal 
run-size pairs in the R-D sense among all the candidates. 
Based on this scheme, we have proposed an iterative 
algorithm to optimize run-length coding, Huffman coding 
and quantization table jointly. The proposed iterative joint 
optimization algorithm results in PSNR gain of up to 3 dB or 
alternatively up to 30% bit rate compression improvement 
for the test images, compared to baseline JPEG. Our 
algorithms are not only computationally effective but 
completely compatible with existing JPEG and MPEG 
decoders. They can be applied to the application areas such 
as web image acceleration, digital camera image 
compression, MPEG frame optimization and transcoding. 
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