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ABSTRACT

This work introduces a semi-supervised approach for learning gen-
erative models for classification/recognition of human trajectories,
with application to surveillance. The classifier is based on switched
dynamical models, with each model describing a specific motion
regime. We present a semi-supervised modified version of the
classical Baum-Welch algorithm, which is able to take into ac-
count a subset of known model labels. The experimental results
reported, using both synthetic and real data, show that the classi-
fier learned with semi-supervision leads to a higher classification
accuracy than the fully unsupervised version, thus validating the
proposed approach.

Keywords: hidden Markov models, switched dynamical models,
EM algorithm, semi-supervised learning, surveillance.

1. INTRODUCTION

One of the main tasks of video surveillance systems is to recognize
and monitor human activities. These tasks are difficult, mainly due
to the complexity of the scene and the human actions. To tackle
the uncertainty inherent to the data, current approaches to activ-
ity recognition typically use probabilistic temporal models, such
hidden Markov models (HMM) and conditional hidden Markov
models (CHMM) [1], modeling single-person or person-to-person
interactions. Alternative methods have been recently proposed,
including the abstract HMM (AHMM) [2] and the hierarchical
HMM (HHMM) [3], which models the high-level behavior of per-
sons in indoor environments, using images from multiple cameras.
These approaches are generative, since the relationship between
the activity and the observations is modeled via a joint probability
function.

Discriminative techniques have also been considered. Two re-
cent examples are conditional random fields (CRF) and maximum
entropy Markov models (MEMM); for details and performance
comparison in the context of video surveillance see [4].

The main feature of this paper is the use a bank of switched
dynamical systems to describe the trajectory of a pedestrian in a
video sequence. We have previously used this type of models for
activity recognition in [5]. The novelty in this paper lies on the
use of a semi-supervised learning framework, in which some of
the model labels are observed. More specifically, we show how the
classical Baum-Welch (BW), that is, the expectation-maximization
(EM), algorithm for learning the parameters of a switched dynam-
ical model can be modified to incorporate the observation of some

labels.
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Fig. 1. (a) Examples of activities (Browsing, leaving) unrolled in
the context of our application; (b) sensors located in the scenario.

The context of application of the present work is the recogni-
tion of typical human activities in a shopping center. The activity
classes are “passing”, “entering” (a shop), “exiting” (a shop), and
“browsing”; see Fig. 1(a) for an illustration. The trajectories in
each activity class are described by a switched dynamical model of
several motion regimes (such as “moving left”, “stopped”). When
only trajectories are observed, the parameters of these switched dy-
namical models are estimated by an EM algorithm, which in this
case coincides with the BW algorithm. When some model labels
are observed (e.g., obtained manually) the EM/BW algorithm has
to be modified; this modification is the main topic of this paper.

The remainder of this paper is organized as follows. Section
2 describes the adopted model. Sections 3 and 4 present the pro-
posed approach based on semi-supervised learning. Experiments
are reported and discussed in Section 5. Finally, Section 6 presents
some concluding remarks.

2. THE MODEL

It is assumed that the human motion activities of interest are rep-
resented by the trajectory of a person mass center in the video se-
quence. The evolution of the mass center is modeled by a bank of
switched dynamical models.

Let x = (x1, ...,xN ) be the sequence of positions of the mass
center, xi ∈ R

2. The switched dynamical system considered is

xt = xt−1 + Tkt + wt, (1)
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where kt ∈ {1, . . . , m} is the label of the active model at time
instance t; Tkt is the mean displacement which depends on the
active model; and wt ∼ N (0,Rkt) is a white Gaussian noise
with zero mean and covariance matrixRkt .

We assume that the sequence of model labels k = (k1, . . . , kN )
is a sample of a Markov chain, with (m × m) transition matrix
B = [B(i, j)] and initial distribution π. The sequence x =
(x1, . . . ,xN ) is observed and k = (k1, . . . , kN ) is partially hid-
den: we observe the labels at some regions of the image. See Fig.
1(b) where the small areas correspond to “sensors” where we know
the model labels. For each activity, the model parameters are those
of an classical HMM: θ = (T1,R1, . . . ,Tm,Rm,B, π).

We now describe the main variables of the problem, assum-
ing that we have M trajectories. Let x(s) = (x

(s)
1 , . . . ,x

(s)
Ns

),
for s = 1, ..., M , denote the s-th observed sequence of positions
(trajectory) and X = {x(1), . . . ,x(M)} the set of observed se-
quences. Let k(s) = (k

(s)
1 , . . . , k

(s)
Ns

) be the label sequence of
the s-th trajectory and K = {k(1), . . . ,k(M)} the set of label se-
quences. Finally, let v(s) = (v

(s)
1 , . . . , v

(s)
Ns

) the binary sequence
indicating whether k(s)

t is visible (v(s)
t = 1) or hidden (v(s)

t = 0)
and V = {v(1), . . . ,v(M)}; of course, V is known.

3. MODEL PARAMETER ESTIMATION

3.1. The EM Algorithm

To learn the parameters of the model presented in the previous sec-
tion, we use a Baum-Welch-type algorithm [6]. Just as the standard
BW algorithm is an instance of EM [7] to estimate the parameter
of an HMM (which the switched dynamical model is), the algo-
rithm herein presented is the EM algorithm for the semi-supervised
learning setting above described.

If both X and K were observed, the complete log-likelihood
could be written as

log p(X ,K|θ) =

M�
s=1

Ns�
t=2

{log p(x
(s)
t |x(s)

t−1, k
(s)
t ) + log B(k

(s)
t−1, k

(s)
t )

+ log p(x
(s)
1 |k(s)

1 ) + log π(k
(s)
1 ))}

(2)

where the terms depending on x1, k1 are assumed known; to sim-
plify the notation, we have omitted explicit dependency of the
model parameters θ.

The EM algorithm produces a sequence of parameter estimates�θ1, . . . , �θr, �θr+1, . . ., by maximizing the so-called Q-function.
Letting �θ denote the current parameter estimate and �θnew its up-
dated value, we have�θnew = arg max

θ
Q(θ; �θ), (3)

where Q(θ; �θ) is the conditional expectation of the complete log-
likelihood, with respect to the hidden elements of K, given the
current parameter estimate �θ, and the set of observed sequences
X . Formally,

Q(θ; �θ) = E
�
p(X ,K|θ) | X , �θr

�
. (4)

The computation of this conditional expectation constitutes the E-
step and is carried out via forward and backward recursions [6].

3.2. The E-step

The forward/backward recursions, applied to the s-th sequence,
yield estimates of P (k

(s)
t |x(s)

t ), P (k
(s)
t−1|x(s)), and P (k

(s)
t−1, k

(s)
t |

x(s)), where x
(s)
t = (x

(s)
1 , . . . ,x

(s)
t ), denotes the set of samples

of x(s) up to instant t. All probabilities that depend on �θ are writ-
ten as �P .

Forward recursion: the prediction step is given by

�P (k
(s)
t = j|x(s)

t−1) =

m�
i=1

�B(i, j) �P (k
(s)
t−1 = i|x(s)

t−1), (5)

The filtering step is given by�P (k
(s)
t = j|x(s)

t ) ∝ �P (x
(s)
t |k(s)

t = j,x
(s)
t−1)

�P (k
(s)
t = j|x(s)

t−1).
(6)

Backward recursion: this recursion produces estimates of
P (k

(s)
t−1, k

(s)
t |x(s)) and P (k

(s)
t |x(s)), as follows:

�P (k
(s)
t−1 = i, k

(s)
t = j|x(s)) = �P (k

(s)
t−1 = i|k(s)

t = j,x(s))

× �P (k
(s)
t = j|x(s))

= �B(i, j)
�P (k

(s)
t−1 = i|x(s)

t−1)
�P (k

(s)
t = j|x(s))�P (k

(s)
t = j | x

(s)
t−1)

. (7)

and

�P (k
(s)
t−1 = i|x(s)) =

m�
j=1

�P (k
(s)
t−1 = i, k

(s)
t = j|x(s))

= �P (k
(s)
t−1 = i|x(s)

t−1)

m�
j=1

�B(i, j) �P (k
(s)
t = j|x(s))�P (k

(s)
t = j|x(s)

t−1)
. (8)

3.3. Semi-Supervision

The standard BW algorithm, which assumes that all elements of
K are hidden, defines a set of “weights” w

(s)
t i , where w

(s)
t i =�P (k

(s)
t = i|x(s)), that is, the current estimate of the probability

that at time t of sequence s, the active model is i. Similarly, the
BW algorithm also defines transition weights w

(s)
t ij = �P (k

(s)
t−1 =

i, k
(s)
t = j|x(s)). These weights are the only information which is

needed to compute the Q-function.
In our scenario, we assume that if v

(s)
t = 1, then k

(s)
t is not

hidden, but an observed label. This requires defining new modified
“weights” w as follows

w
(s)
t i =

�
w

(s)
t i ⇐ v

(s)
t = 0

δ(i − k
(s)
t ) ⇐ v

(s)
t = 1,

(9)

where is δ is the Kronecker delta function, i.e., δ(a − b) = 1, if
a = b, and zero otherwise. Notice that if v(s)

t = 1, then k
(s)
t is an

observed variable. Similarly,

w
(s)
t ij =

������������	

w
(s)
t ij ⇐ (v

(s)
t−1 = 0) ∧ (v

(s)
t = 0)

δ(i − k
(s)
t−1)δ(j − k

(s)
t ) ⇐ (v

(s)
t−1 = 1) ∧ (v

(s)
t = 1)


δ(i − k
(s)
t−1)w

(s)
t ij

�
j

⇐ (v
(s)
t−1 = 1) ∧ (v

(s)
t = 0)


δ(j − k
(s)
t )w

(s)
t ij

�
i

⇐ (v
(s)
t−1 = 0) ∧ (v

(s)
t = 1),

where 〈·〉u denotes normalization such that the sum with respect
to u equals one.
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3.4. The M-step

The Q-function is simply obtained as in the standard BW algo-
rithm, but using the semi-supervised weights w

(s)
t i and w

(s)
t ij in-

stead of w
(s)
t i and w

(s)
t ij . The parameter estimates are updated ac-

cording to standard rules of the BW algorithm (see [6] for full
details).

In summary, our semi-supervised EM algorithm comprises three
steps in each iteration: the standard E-step, which yields the prob-
abilities/weights w

(s)
t i and w

(s)
t ij , under the assumption that all the

labels are hidden; a “forcing” step (described in Section 3.3) in
which the known labels are used to modify these weights; a stan-
dard M-step which updates the model parameter estimates.

4. CLASSIFICATION

The classification problem can be stated as follows: given an ob-
servable trajectory x we want to classify into the set of activities
A = {A1, . . . , AL}. Each activity Al is characterized by a model
of the form (1), i.e., by the corresponding parameter estimate �θ(l),
previously obtained using the EM algorithm above described.

The classification of the sequence x is obtained by the maxi-
mum a posteriori (MAP) rule as

j = arg max
l

{p(x|�θ(l))p(Al)}. (10)

where p(Al) is the a priori probability of activity Al, herein taken
as p(Al) = 1/L. Each likelihood term p(x|�θ(l)), for l = 1, ..., L,
can be obtained by running one forward/backward recursion, with
the corresponding model parameter estimate �θ(l).

5. EXPERIMENTAL RESULTS

5.1. Synthetic Data

The considered scenario is shown in Fig. 2, which shows typical
patterns of trajectories that a person may perform in a corridor of
a shopping center. The thin rectangles correspond to areas where
the trajectory begins/ends which correspond to the position of the
sensors (known model labels). The first sample of the trajectory
is random, simulating that the person may appear randomly in the
scene. The trajectories are generated according to (1).

The first stage of the algorithm is to estimate �θ(l), for l =
1, ..., 4 (“passing”, “entering”, “exiting”, “browsing”). For this
purpose, we ran both the standard and the semi-supervised EM
(BW) algorithms, with a set of training trajectories, using 5 models
(m = 5) for all activities. In this experiment we have used about
200 samples per trajectory, with 5% of known labels. Fig. 3 (a)
shows the initialization of the EM algorithm; we plot level curves
of the 5 Gaussian densities of means Tk and covariances Rk, for
k = 1, ..., 5, and the dots represent the observed displacements
xt − xt−1. Fig. 3(b) and (c) shows the estimates obtained by
the standard and the semi-supervised algorithms, respectively. It’s
clear that semi-supervision allowed the correct estimation of five
models which have the following semantics: “moving left”, “mov-
ing right”, “moving up”, “moving down”, “stopped”. To assess the
classification accuracy, we have generated another 210 trajectories
from each activity, and have classified them according to (10). The
parameter estimates obtained in the semi-supervised mode lead to
100% classification accuracy, while the fully unsupervised esti-
mates lead to 88% accuracy.
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Fig. 2. Several synthetic activities: (a) entering, (b) leaving, (c)
passing, (d) browsing.

5.2. Real Data

The proposed approach was also tested in real data collected in
the context of CAVIAR project [8]: 64 video sequences hand la-
beled with the ground truth (this data is available at [8]). These
sequences include indoor shopping center observations of individ-
ual and groups of pedestrians. Fig. 4 (a) and (b) show the results
obtained without (a) and with (b) semi-supervised training. As
in the synthetic case, the semi-supervision allowed estimating five
underlying models which approximately correspond to five motion
patterns: “moving left”, “moving right”, “moving up”, “moving
down”, “stopped”.

Fig. 5 shows several real trajectories, i.e, evolution of the cen-
troid of the bounding box, as well as the corresponding activity
classifier output. To assess the classification accuracy, we have
classified 51 trajectories, using the MAP criterion (10). Using the
parameter estimates obtained with semi-supervision, the accuracy
obtained was was 90.0%, while without semi-supervision, the ac-
curacy dropped to 80.3%.

6. CONCLUSIONS

In this work we have presented a semi-supervised framework for
modeling and recognition of human trajectories with application to
surveillance. The method uses switched dynamical models, with
each model describing a specific motion regime. We have shown
how to modify the classical Baum-Welch (BW) algorithm to take
into account a subset of known model labels, leading to a semi-
supervised BW algorithm. The experimental results reported, with
both synthetic and real data, validate the method by showing that
semi-supervision leads to a higher classification accuracy than the
unsupervised version. Future work will include more complex
events containing more switching times and extension to other ap-
plications.
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Fig. 3. Estimates of the dynamical models in the synthetic case: (a)
initialization; (b) estimates without semi-supervision (after 20 it-
erations); (c) estimates with semi-supervision (after 10 iterations).
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Fig. 4. Estimates of the dynamical models in the real case: esti-
mates without (left) and with (right) semi-supervision.
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