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ABSTRACT

The major problem in building a good lipreading system is
to extract effective visual features from the enormous quan-
tity of video sequences data. For appearance-based feature
analysis in lipreading, classical methods, e.g. DCT, PCA and
LDA, are usually applied to dimensionality reduction. We
present a new pattern classification algorithm, called Locality
Discriminant Graph (LDG), and develop a novel lipreading
framework to successfully apply LDG to the problem. LDG
takes the advantages of both manifold learning and Fisher cri-
teria to seek the linear embedding which preserves the local
neighborhood affinity within same class while discriminating
the neighborhood among different classes. The LDG embed-
ding is computed in closed-form and tuned by the only open
parameter of k-NN number. Experiments on AVICAR corpus
provide evidence that the graph-based pattern classification
methods can outperform classical ones for lipreading.

Index Terms— Lipreading, graph embedding, discrimi-
nant analysis, audio-visual speech, discrete cosine transform.

1. INTRODUCTION

Over the past decades, numerous studies have demonstrated
that the information of lip movement and speech signal are
highly correlated and can be complementary for both human
and machine perception [13, 14]. For example, some speech
sounds are distinct in the visual domain, yet are easily con-
fused in the audio domain. As a result, in the last a few years,
lipreading has been attracted lots of research attentions for
the improvement of the speech recognition performance, es-
pecially under noise environment [12].

The major problem in building a good lip-reading system
is to extract effective visual features from the enormous quan-
tity of data in video sequences. Many existing papers have in-
troduced different algorithms for visual feature extraction. In
principle, they can be categorized into 3 groups: appearance-
based features, shape-based features, and combination of both
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[16]. It has been shown that the appearance-based features
achieve better performances than the other categories [15].
For appearance-based technique, the image patches contain-
ing the entire speaker’s mouth area are considered as the raw
features for lipreading. However, the dimensionality of the
mouth region, which is the number of pixels in the image
patch, is usually too large to allow effective statistical model-
ing, by means of a prevalent Hidden Markov Model (HMM)
[17]. Therefore, several classical linear transformation algo-
rithms are adopted for dimensionality reduction [8], in which
the most commonly applied transforms are the Discrete Co-
sine Transform (DCT) [18], Principal Components Analysis
(PCA) [19] and Linear Discriminant Analysis (LDA) [20].

Recently, the manifold learning and dimensionality reduc-
tion in supervised manner have been the focus of considerable
issues in image processing and pattern recognition. Unlike
above traditional methods that consider Gaussian assumption
and global feature space modeling, such new techniques, e.g.
Locally Linear Embedding (LLE) [2], Laplacian Eigenmaps
[4], Isomap [3], focus on preserving the local geodesic dis-
tances and neighborhood relationships which reflect the real
geometry structure of the low-dimensional manifold without
strongly depending on the data distribution. Moreover, the
linearization form of these methods [9], e.g. Locality Pre-
serving Projections (LPP) [5], and Locality Embedded Anal-
ysis (LEA) [1], are designed for more practical applications
in pattern classification. Since lipreading needs data fusion
and multicue audio-visual analysis [10], it is straightforward
to introduce such manifold learning methods into this field.
However, these linear algorithms mainly focus on preserving
data localities and similarities in the manifold space so that
discriminating power can not be guaranteed sufficiently high.
As a result, the projected data points of different classes may
still overlap after embedding. A few recent developed suc-
cessful manifold learning methods [7, 6] take into account
the Fisher criteria which explicitly aims at maximizing the
discriminant capacity of the embedding.

In this paper, we present a new algorithm, called Locality
Discriminant Graph (LDG), for feature extraction and repre-
sentation in the application of lipreading. In supervised learn-
ing case, assuming there are generally two types of nearest
neighbors of the same class and different class for each data
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point, the affinities of such neighborhood relations are mod-
elled by locality linear reconstructions of NNs. Our proposed
algorithm tries to seek the linear embedding which preserves
the local neighborhood affinity within same class while dis-
criminating the neighborhood affinity among different classes.
Such LDG embedding is computed in closed-form and tuned
by the only open parameter of k-NN number. The effective-
ness and advantage of LDG are validated by applying it to the
realistic lipreading scenario on AVICAR corpus, and compar-
ing with several traditional techniques.

Our major contribution and conclusions are summarized
in four points. (1) We present a new pattern classification
algorithm LDG for discriminant subspace learning; (2) We
develop a lipreading framework and successfully apply LDG
algorithm to the problem; (3) This work demonstrates that the
graph-based feature selection methods can outperform classi-
cal ones for lipreading. (4) To our best knowledge, this is a
new try to apply graph-based methods to lipreading.

2. LIPREADING FRAMEWORK

Our lipreading system is structured through a flow diagram in
Figure 1. First, AdaBoost-based face tracker and lip tracker
are used to estimate the mouth region (Region of Interest,
ROI). The entire image in the ROI creates the source high-
dimensional feature space. Secondly, different dimensional-
ity reduction algorithms, including classical linear transfor-
mation algorithms (DCT, PCA, LDA) and manifold learn-
ing algorithms (LPP, LEA, LDG) are used and compared for
learning low dimensional feature space. Linear head posi-
tion correction and model-based head position correction are
operated on lip features for alleviating the influence by dif-
ferent head pose and unequal length of feature vector. Last,
left-to-right and continuous density HMM is trained at word-
level in the training database. Each HMM contains 7 states,
while one or more Gaussian distributions with diagonal co-
variance matrix are associated with each state. The HMM-
based recognizer was implemented using the hidden Markov
model toolkit HTK version 3.1 [21].

3. LOCALITY DISCRIMINANT GRAPH

3.1. Discriminant Graph Modeling

The new algorithm, Locality Discriminant Graph (LDG), is
based on the assumption that geometric relationship among
the high dimensional data is described by the linear neigh-
borhood reconstruction. It means that each data point can be
represented by the linear combination of its k nearest neigh-
bors. Considering the Fisher criteria, we define two types of
k nearest neighbors for each data point: same class k-NN
and different class k̃-NN (k can be different from k̃). Here
the k-NN can be constructed by any kinds of distance metric

Fig. 1. Lipreading system structure.

(spatio-temporal, Euclidean, correlation) or searching strate-
gies (kd-Tree, Hash).

Suppose we have the original data set X = {xi : xi ∈
R

D}ni=1. Considering supervised learning case, each sample
pattern in the training set is associated with a category label l,
so we have a label set L = {li : li ∈ R}

n
i=1. Denote the set

of xi’s same class k nearest neighbors from set X as X (i)s =

{x
(i)
s(j)}

k
j=1, satisfying l

(i)
s(p) = l

(i)
s(q) for p, q = 1, 2, · · · , k. In

the same way, denote the set of xi’s different class k̃ near-
est neighbors from set X as X (i)d = {x

(i)
d(j)}

k̃
j=1, satisfying

l
(i)
d(p) �= l

(i)
d(q) for p, q = 1, 2, · · · , k̃. In the style of LLE mod-

eling, the same class and different class reconstruction error
are calculated by the following cost functions respectively.{

εs(Cs) =
∑n

i=1

∥∥xi −
∑k

j=1 c
(i)
s(j)x

(i)
s(j)

∥∥2
εd(Cd) =

∑n

i=1

∥∥xi −
∑k̃

j=1 c
(i)
d(j)x

(i)
d(j)

∥∥2 (1)

where Cs and Cd are n × n matrices to encode the coeffi-
cients, and s(j),d(j) = 1, 2, · · · , n. Define the reconstruc-
tion coefficient set C(i)s = {c

(i)
s(1), · · · , c

(i)
s(k)} for same class

case and C(i)d = {c
(i)
d(1), · · · , c

(i)

d(k̃)
} for different class case re-

spectively, subject to the following constraints{ ∑k

j=1 c
(i)
s(j) = 1, if c

(i)
s(j) ∈ C

(i)
s ; else c

(i)
s(j) = 0.∑k̃

j=1 c
(i)
d(j) = 1, if c

(i)
d(j) ∈ C

(i)
d ; else c

(i)
d(j) = 0.

(2)
We have Cs[i, s(j)] = c

(i)
s(j), Cd[i,d(j)] = c

(i)
d(j) and the

other elements all 0. Cs and Cd are sparse matrices consist-
ing of neighborhood characteristic of the original space.

From the above formulation, we have two cost functions
with X , X (i)s , X (i)d known and Cs, Cd unknown. For graph
modeling, we can calculate the two kinds of coefficients with
each data point centered in local by solving{

C
(i)
s = argmin(εs(Cs)).

C
(i)
d = argmin(εd(Cd)).

(3)
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Then we can fill in the elements of matrices Cs and Cd

with above results. Notice that here we already have two pa-
rameters, k and k̃, to tune for better localized graph modeling.

3.2. Subspace Learning

Our goal is to find a linear projection P ∈ RD×d of our de-
sired subspace, which preserves the local neighborhood affin-
ity within same class while discriminating the neighborhood
affinity among different classes at the same time. Hence we
adopt the similar cost function as Equation 1 to represent the
model in the embedded subspace. The objective function for
modeling P is formulated as follows

{
εs(P) =

∑n

i=1

∥∥PTxi −∑k

j=1 c
(i)
s(j)P

Tx
(i)
s(j)

∥∥2
εd(P) =

∑n

i=1

∥∥PTxi −∑k̃

j=1 c
(i)
d(j)P

Tx
(i)
d(j)

∥∥2 (4)

Notice that we have above Cs and Cd and X known but
matrix P unknown this time. After embedding, we want to
keep the class relation reflected by the known labels. That is
to say, in the low-dimensional subspace, we want to preserve
neighboring points close if they have the same label, while
prevent points of other classes from entering the neighbor-
hood. We finally have the constrained optimization problem

P = max(εd(P)), subject to εs(P) = t. (5)

where t is a small constant, such as 1. This equation can be
solved by Lagrange Optimization.

3.3. The LDG Algorithm

The proposed LDG algorithm in matrix forms is summarized
as follows. Due to space limit, some details are omitted.

3.3.1. Calculate Coefficient Matrices.

Define the k×k local GrammatrixGi for each xi asGi[p, q] =(
xi − x

(i)
s(p)

)T (
xi − x

(i)
s(q)

)
, we have C(i)

s =
G

−1

i
1

1TG−1

i
1
. Then

Cs[i, s(j)] = C
(i)
s (j). In the same way, define the k̃× k̃ local

Grammatrix G̃i for each xi as G̃i[p, q] =
(
xi−x

(i)
d(p)

)T (
xi−

x
(i)
d(q)

)
, we haveC(i)

d =
G̃

−1

i
1

1T G̃−1

i
1
. ThenCd[i,d(j)] = C

(i)
d (j).

3.3.2. Calculate Projection Matrices.

After we get Cs and Cd, we can calculate projection matrix
P by solving the following eigenvalue problem

X

(
Dd−Cd

)
T
(
Dd−Cd

)
X
T
P = ΛX

(
Ds−Cs

)
T
(
Ds−Cs

)
X
T
P.

(6)
whereDd[i, i] =

∑n

j=1Cd[i, j] andDd[i, i] = 0 for ∀ i �= j,
alsoDs[i, i] =

∑n

j=1Cs[i, j] andDs[i, i] = 0 for ∀ i �= j.
As a result, we have [p1 p2 · · · pd], the generalized

eigenvectors that correspond to the d largest eigenvalues in
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Fig. 2. Comparison of the highest lipreading accuracy (per-
centage) of all the 6 methods under different number of Gaus-
sian mixtures per HMM state.

Equation 6. We can instead solve the following eigen decom-
position equation with Singular Value Decomposition (SVD)

AP = ΛP (7)

where A =
[
X
(
Ds − Cs

)T (
Ds − Cs

)
XTP

]
−1[
X
(
Dd −

Cd

)T (
Dd−Cd

)
XTP

]
andP denotes the learned subspace.

3.3.3. Calculate Data Projection.

Any new input data Xnew can be represented by the new co-
ordinatesYnew = PTXnew.

4. EXPERIMENTS

We demonstrate the effectiveness of our algorithm and com-
pare it with other state-of-the-art methods using the UIUC
AVICAR corpus [11], shown in Figure 1. The UIUCAVICAR
corpus data are recorded in a real car environment using a
multi-sensory array, consisting of eight microphones on the
sun visor and four video cameras on the dashboard. The four
cameras are fixed in different locations to take four views of
images synchronously. The training set has 851 utterances
from 21 talkers, and the testing set has 490 utterances from 13
different talkers not in the training set. Both male and female
talkers from various language backgrounds are contained in
the training and testing sets. The script of each utterance is
the connected digits. We train the multi-talker whole-word
HMMs for all digits in the training set.

The entire pixels in the ROIs of the four sub-images in
each frame create the high-dimensional source feature space.
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Table 1. Number of feature dimension corresponding to the
highest lipreading accuracy in Figure 2.

Gaussian Mixtures
Methods 2 4 8 32

DCT 49 37 49 44
PCA 45 42 47 41
LDA 48 48 49 49
LPP 49 41 48 38
LEA 42 40 44 33
LDG 41 41 41 50

We first compress the pixels in each of the four sub-images
to the corresponding upper-left 584 DCT coefficients. After
stacking them together, we have in total 2,336 dimensions for
the combined feature vector. Then we compress this DCT
feature further to the first 100 PCA coefficients. Finally, dif-
ferent subspace learning methods, DCT, PCA, LDA, LPP,
LEA and LDG, are applied to represent the lipreading fea-
ture in 1 ∼ 50 dimensions after dimensionality reduction.
Figure 2 shows the comparison of the highest lipreading ac-
curacy (percentage) of all the 6 methods under different num-
ber (2,4,8,32) of Gaussian mixtures per HMM state. Table 1
shows the number of feature dimension corresponding to the
highest lipreading accuracy in Figure 2. We can observe that
the graph-based manifold learning and dimensionality reduc-
tion methods, e.g. LEA and LDG, outperform the classical
linear subspace learning methods, e.g. DCT, PCA and LDA,
in all the cases under different number of Gaussian compo-
nents. The computational complexity of these methods are all
comparable to each other, but LDG consistently achieves the
highest lipreading accuracy in all the cases with comparable
best dimension numbers to that of the other 5 methods after
dimensionality reduction. It is due to the database complexity
and the pre-compression on the original feature by DCT that
cause the marginal improvement by LDG for this database.

5. CONCLUSION

We have presented a new pattern classification algorithm, LDG,
and developed a novel lipreading framework to adopt LDG as
the feature selection method. LDG has been validated to be
effective for feature representation and dimensionality reduc-
tion. Experimental results also demonstrate that, with com-
parable number of dimension for feature representation, the
graph-based pattern classification methods, e.g. LEA and
LDG, can outperform classical ones, e.g. DCT, PCA and
LDA, for appearance-based feature analysis in lipreading.
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