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ABSTRACT

A robust method of camera response function estimation applicable
to auto-exposure cameras is presented. The method uses the super-
position property of light to solve for the response function directly
using superposition constraints imposed by using different combina-
tions of two (or more) lights that illuminate the same subject mat-
ter in varying proportions. An iterative optimization is utilised to
simultaneously recover the exposure ratios of the images and the
camera response function. Previously published multiple exposure
methods that simultaneously estimate exposure ratio and response
function suffer from a fundamental ambiguity. The use of the pro-
posed superposition constraints solves this problem. We introduce a
simple method for combining both superposition and homogeneity
(from multiple exposure techniques) to accurately recover the re-
sponse function from auto-exposure cameras.

Index Terms—Cameras, Image sensors, Calibration, Image color
analysis, Lighting, Image registration

1. INTRODUCTION

Camera response functions map the actual quantity of light imping-
ing on each element of a sensor array (or each region of a film plane)
to the pixel values that the camera outputs.

Linearity (which is typically not exhibited by most camera re-
sponse functions) implies the following two conditions:

1. Homogeneity: A function is said to exhibit homogeneity if
and only if f(ax) = af(x), for all scalar a.

2. Superposition: A function is said to exhibit superposition if
and only if f(x + y) = f(x) + f(y).

The two are often written together, as: Linearity: f(ax + by) =
af(x) + bf(y).

In image processing, homogeneity arises when we compare dif-
ferently exposed pictures of the same subject matter. Superposition
arises when we superimpose (superpose) pictures taken from differ-
ently illuminated instances of the same subject matter, using a simple
law of composition such as addition (i.e. using the property that light
is additive).

A variety of techniques have been proposed to recover the cam-
era response function using different exposures of the same subject
matter [1][2][3][4]. These methods work well in situations where
one has some control over the exposure of the camera. In situations
where the exposure ratios between the images is not known, or can-
not be set (as is the case with many automatic exposure cameras
that have no manual override), the lack of a unique solution for the

exposure ratio and response function makes a simple and accurate
recovery difficult. Grossberg and Nayar [5] call this “The exponen-
tial ambiguity”, and prove that it is the only ambiguity in recovering
the response function and exposure ratios together.

In [5], Grossberg and Nayar present a theoretical method for re-
covering the exposure ratio without solving for the response function
as a means of breaking this ambiguity. Their method estimates the
exposure ratio from the derivative the camera response function at
pixel value zero. Unfortunately, due to the methods heavy depen-
dence on high SNR at small intensity values, it is difficult to apply
in practice.

The exponential ambiguity can be dealt with by making assump-
tions about the form of the response function. For example, Mit-
sunaga and Nayar [6] used a polynomial form for the response func-
tion. Barros and Candocia [2] indirectly make assumptions about the
shape of the response function by assuming that the comparamet-
ric function of the response function is piecewise linear. Mitsunaga
and Nayar were then able to obtain the polynomial approximated
response function as well as the exposure ratios, by alternately solv-
ing for the response function and the exposure ratios in an iterative
scheme.

Tsin et al [7] solve for the camera response function from multi-
ple exposure data while allowing for small deviations from the nom-
inal exposure due to effects like automatic white balance. Their op-
timization avoids trivial solutions caused by the exponential ambi-
guity by punishing large deviations in exposure. Note that this tech-
nique would not work for completely unknown exposures.

Shafique and Shah [8] proposed a method that uses varying il-
lumination rather than multiple exposures, however they make the
strong assumption that the camera response function is a gamma
curve.

The method presented in this paper is easy to use, assumes only
that the camera response function is semi-monotonic and does not
require knowledge of or control of the exposure level (i.e. it works
with manual or automatic exposure cameras). It avoids the exponen-
tial ambiguity by using the superposition constraints created using
two separately controllable lights to illuminate a scene. The method
is an extension of the technique presented in [9] that uses superpo-
sition constraints to break the comperiodic ambiguity 1 The method
presented in [9] requires that the camera’s exposure sensitivity does
not change as the scene lighting changes and thus does not work with
automatic exposure cameras in which there is no explicit control over
camera exposure setting.

1Given fixed exposure ratios, different camera response functions give
rise to the same camera response function. Also known as the “self similar
ambiguity” in [6][5].
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The acquisition of a set of images suitable for use with our
method is easy using controllable lights. However the technique is
also useful in many situations where direct access to the illumination
sources is impossible. For example, a camera in a typical building or
dwelling may observe an at least partially static scene during which
time various lights are turned on and off throughout the day (i.e.
as when a surveillance camera observes a scene in which lights get
switched on and off by cleaning staff or by automatic timers in var-
ious permutations). In some situations, the method can also work
due to flickering of various lights (i.e. lights on different phases of
an electric supply, or by the fact some lights like tungsten lamps lag
behind fluorescent lamp flicker).

Due to the fact that it is difficult to capture pictures that have
pixel values that are well distributed over the range of the camera,
often only a partial recovery of the camera response function is pos-
sible using a single set of three images (i.e. with one light, the other
light, and both lights, as in Fig 1) of differently illuminated images.
A secondary method is thus presented to complete the recovery by
using the partially recovered response function to add the homogene-
ity constraints provided by one or more other sets of images taken
at arbitrary exposure values. This secondary method uses the con-
straint covariance matrix as a natural structure to aggregate the cam-
era response function constraints obtained using both homogeneity
and superposition.

1.1. Solving for the Inverse Camera Response Function By Su-
perposition

The standard superposimetric [9] procedure is used: in a dark en-
vironment, two distinct light sources are set up. Three pictures are
taken, one with each light on individually (pa, pb), and one with
the two lights on together (pc). From this data we solve for the
camera response function f by using the following constraints: For
the ith pixel position in each of the three images: pa[i] = f(qa),
pb[i] = f(qb), and pc = f(qa + qb). Where the quantity q is known
as the photographic quantity or photoquantity [1][10].

Since the property of superposition holds with photoquantities,
we can form the following equation:

f
−1(f(qa)) + f

−1(f(qb)) = f
−1(f(qc)) + εQ, (1)

where εQ is the mean error due to quantization and other noise pro-
cesses. We can thus solve for f−1, i.e. the mapping from pixel
value px to quantized photoquantities q̄x that are optimal in the least-
squares sense by minimizing the following equation:

e =
X

∀n

`
f
−1(pa[n]) + f

−1(pb[n]) − f
−1(pc[n])

´2
, (2)

where pa[n], pb[n], pc[n] are the nth pixels of three images taken of
a scene with constant exposure and three illumination permutations
of two light sources in an otherwise dark environment. Pixel values
pa and pb are from images of the scene with each of the two light
sources turned on independently. Pixel value pc is from the image
of the scene with both light sources turned on together, as shown in
Fig 1.

Since most cameras output a finite range of pixel values, care
must be taken when applying the assumptions made at the ends of the
camera’s range where clipping occurs. In the remainder of the paper,
we will assume that the camera outputs pixel values in the range
[0, 255] with clipping occurring at 0 and 255. This is not always
the case, but the modification to the analysis under other conditions
is very simple. As a result of clipping at the ends of the camera’s

Fig. 1: One of the image sets used. Leftmost: Picture with light A turned on. Middle:
Picture with light B turned on. Rightmost: Picture with light A and B turned on together;
note the double shadows.

range, we do not try to solve for f−1(0) or f−1(255). Instead we
can solve for the quantization points q̂0,1 and q̂254,255 , where q̂a,a+1

is the quantization point separating pixel value a and a + 1. This
allows us to conclude that if we measure a pixel value of 0 with the
camera, a quantity of light below q̂0,1 was measured. Similarly, a
pixel value of 255 represents a photoquantity greater than q̂254,255 .
A method for solving for these thresholds is not presented, but can
be accomplished by using a multi-exposure technique after one has
accurately determined a portion of the camera response function.

We thus define f−1 as the mapping from pixel values (1, 2, 3...254)
to the quantized photoquantities (q̄1, q̄2, q̄3...q̄254). We can now
write equation 2 more simply as:

e =
X

∀n,Pa,Pb
Pc �=0,255

`
q̄pa[n] + q̄pb[n] − q̄pc[n]

´2 (3)

Equation (3) can be efficiently minimized using a singular value
decomposition (SVD). To do this, we represent f−1 as a vector
�f−1 = [q̄1, q̄2, q̄3...q̄254 ]

T and we form a constraint matrix A such
that the nth row of the matrix corresponds to the nth pixel in images
pa, pb and pc. Each row has a 1 in columns a and b,−1 in column c

and zeros in all other columns. In the nth row, a, b and c correspond
to pixel values pa[n], pb[n] and pc[n] respectively. The least squares
solution of the homogeneous equation: A�f−1 = 0 is then obtained
by obtaining the SVD of A = UΣV T and using the column of V

corresponding to the smallest singular value in Σ.
Solving for f−1 by this method assumes that the error: ε =

qa + q̄b − q̄c is Gaussian. Without noise, clipping at 255 can create
a problem by biasing the distribution of the measured pixel values.
With camera noise, this bias becomes very significant in pixel ranges
near both clipping points: 0 and 255. Also, as with all least squares
methods, outlier points can significantly perturb the solution.

With these considerations, the method is improved by robustly
estimating f(q̄c) by generating a histogram of the measured pixel
values of c for each additive combination of a and b. By assum-
ing that the normalized histogram is a reasonable approximation of
the actual probability distribution of c, we can use the peak of this
histogram ĉa+b as our best estimate of f−1(f(q̄a + q̄b)). Our mini-
mization problem thus becomes:

e =
X

∀pairs{x,y}

N{x,y}

`
q̄x + q̄y − q̄ĉx+y

´2 (4)

Where N{x,y} is the number of instances of f−1(a) + f−1(b) =

f−1(c) in the data set.
For a digital camera with 256 pixel levels, this collection of his-

tograms can be expressed in a 256 × 256× 256 array, with the first
two dimensions being the pixel values in image Pa and Pb respec-
tively, and the third dimension containing the number of occurrences
of each pixel value for each {a, b} combination. This representation
is effective since we can easily compile information from multiple
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Fig. 2: The left figure shows a variety of response functions that were used to test the
algorithm. Images with a predetermined exposure ratios were generated randomly with
gaussian noise (σ = 10 pixel levels) added to simulate camera noise. The proposed
algorithm was then used to recover the response function and the exposure ratios with
the results shown on the figure in dashed lines. Note that the recovered points fall
virtually on top of the original functions (plotted as solid lines). The right figure shows
an example 3-D error surface parameterised over k1 = (0, 5), k2 = (0, 5). The
figure shows the local minimum associated with the correct exposure ratio as well as the
k1 + k2 = 1 singularity.

image sets by simply adding the collection of histograms produced
by each set, thereby increasing the accuracy of our estimate of f(q̄c).
In order to improve the estimate of the peak location, the histograms
are each smoothed with a Gaussian kernel. This procedure is espe-
cially important when {a, b} combinations are poorly represented.

2. SIMULTANEOUS ESTIMATION OF EXPOSURE
RATIOS AND RESPONSE FUNCTION

To simultaneously solve for the exposure ratios and the camera re-
sponse function, we form a matrix equation for the constraints on the
response function paramaterized by k1, k2.

e =
X

∀pairs{x,y}

N{x,y}

`
k1q̄x + k2q̄y − q̄ĉx+y

´2 (5)

Where k1 is the exposure ratio images pa and pc, k2 is the exposure
ratio of images pb and pc. N{x,y} is the number of instances of
f−1(a) + f−1(b) = f−1(c) in the data set.

We minimize over (k1, k2) and �f−1 = [q̄1, q̄2, q̄3...q̄254]
T .

By computing:

CA{i, :} = [01
, ..., 0q̄x−1

, N
q̄x

{x,y}, 0
q̄x+1

, ..., 0255] (6)

CB{i, :} = [01
, ..., 0q̄y−1

, N
q̄y

{x,y}
, 0q̄y+1

, ..., 0255] (7)

CI{i, :} = [01
, ..., 0q̄x−1

,−N
q̄ĉx+y

{x,y} , 0q̄x+1
, ..., 0255] (8)

CMat = k1
2
C

T
ACA+k2

2
C

T
BCB+C

T
I CI+k1k2(C

T
ACB+C

T
BCA)

+ k1(C
T
ACI + C

T
I CA) + k2(C

T
BCI + C

T
I CB)

(9)

If we know k1 and k2, the least squares solution for f−1 can be
easily obtained by using the singular value decomposition (SVD):
CMat = UΛV T . f−1 will be the column of V corresponding to the
smallest singular value in Λ.

To find k1 and k2 we perform a gradient descent linesearch op-
timization in the 2D space (k1, k2) using the smallest singular value
of CMat as the error function:

error(k1, k2) = Λ(255, 255); (10)

The optimization is made computationally efficient by pre-computing
CT

ACA, CT
BCB , CT

I CI , C
T
ACB, CT

BCA, CT
ACI , C

T
I CA, CT

BCI and
CT

I CB , leaving only scalar multiplication and addition of 254x254
square matrices and an SV D of the result.

From experimentation using simulated data, it was found that
this error surface was very well behaved, giving few pitfalls in the
optimization. Figure 2 gives some samples of response function used
in the simulation. The most noteworthy feature of the error surface
that must be considered in all cases is the degenerate situation when
k1 + k2 = 1. In this case, the second smallest singular value must
be used for the error, to avoid obtaining the trivial constant solution
to f−1. A typical error surface is depicted in figure2. This shows
both the k1 + k2 = 1 singularity as well as the well defined local
minimum generated by the true solution for k1 and k2.

When there is no a priori knowledge of the exposure ratios, two
starting points on either side of the k1 + k2 = 1 line must be used
for the optimization. In most cases optimization works well without
any tricks, however in some of our experiments it was necessary to
put a penalty on negative k1 and k2.

In general because of the difficulty in capturing a single set of
pictures that span the whole camera range, it is often difficult to
achieve reliable results. This problem is more pronounced in cam-
eras that have a high level of noise and low resolution. Typically the
histograms of images have pixel values lumped in some part of the
camera range.

Though the superposition method achieves very good results,
when there is not enough data, the algorithm is difficult to stabilize2
and can produce inaccurate results. For example, to add a smooth-
ness term, can use the λ weighted constraints:

0 = λ(−q̄n−2 + 16q̄n−1 − 30q̄n + 16q̄n+1 − q̄n+2) (11)

The logical solution is to solve for only part of the response func-
tion. This partial response function can then be used to find the expo-
sure difference between pairs of images, making it easy to add more
constraints to the solution. By using the sample covariance matrix
CMat as a structure to aggregate the data, it is easy use homogene-
ity and superposition constraints for the solution. The fixed size of
the matrix (254x254), allows data to be continually added without
increasing the memory requirements.

To solve for a partial response function, we can crop the Co-
variance matrix CMat to a pixel value range that is well represented
in the images. Cpart = CMat(minV al : maxV al, minV al :
maxV al), where minV al and maxV al are chosen from a well
populated overlapping pixel value range from the superposition im-
age triplet. For example, the triplet shown in figure1 usedminV al =
10 andmaxV al = 140 for the analysis. The results from the simul-
taneous recovery of exposure ratios and camera response function in
this range is presented in figure3.

3. IMPROVING THE ESTIMATE USING HOMOGENEITY

By using the partially recovered response function (shown in the top
right plot of figure 3), computing the exposure differences between

2usually with add-hoc regularization strategies
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pairs of images of similar subject matter is a simple task. This en-
ables us utilize homogeneity constraints without the problem of the
exponential ambiguity.

By using the covariance matrixCMat to aggregate the constraints,
we add the data obtained through homogeneity relations by: comput-
ing Cu and CKu for each corresponding pixel i in a pair of images
taken of the same subject matter using different exposures.

Cu{i, :} = [01
, ..., 0q̄u−1

, 1q̄u , 0q̄u+1
, ..., 0255] (12)

CKu{i, :} = [01
, ..., 0q̄Ku−1

, 1q̄Ku , 0q̄Ku+1
, ..., 0255] (13)

By solving for the exposure difference κ between each pair of im-
ages using the recovered partial response function, we add the new
data to the aggregate CMat:

CMat = CMat + (Cu − κCKu)T (Cu − κCKu) (14)

Note that when we are adding to the CMat previously generated
from the superposition data. Thus for a set images of the same sub-
ject matter we can add the constraint data from all possible pairs of
images. Generally κ will be pair dependent. With an auto-exposure
camera it is quite easy to generate a variety of exposures, for ex-
ample: placing a small light in the center of the scene to “fool” the
camera, i.e. since the camera slowly responds to this disturbance, a
variety of exposures will occur. This effect also occurs naturally, for
example when a surveillance camera monitors a scene and lights are
switched on and off in a room, it takes time for the camera to adjust
itself (automatic exposure) to the changes in light levels. Thus suc-
cessive frames of video are used in order to obtain sets of images that
differ only in exposure, to a particular lighting configuration. These
changes in lighting, and in exposure (automatic gain control in the
camera and possibly automatic white balance) work together to pro-
vide a rich space of superposition and homogeneity data. Results
from applying this method to a Nikon D70 camera (used for its abil-
ity to provide ground truth data) are presented in figure 3. In this fig-
ure, the top left image describes the resulting CMat from the super-
position constraints provided by the image sequence shown in figure
1. The top right plot shows the recovered partial response function
from the CMat on the left. The bottom left image shows the aggre-
gate CMat from the original superposition constraints together with
the homogeneity constraints from a sequence of ten differently ex-
posed images. The bottom right the plot shows the response function
solution provided by the aggregate CMat overlaid on the partial re-
sponse function solution. The plot also shows a comperiodic (wavy,
ambiguous) solution obtained from using one image pair alone, illus-
trating success of the method in breaking the self-similar ambiguity.

4. CONCLUSION

Amethod of recovering an unknown response function of an automatic-
exposure camera was presented. This method is particularly useful
because many modern low cost cameras such as web cameras, as
well as cameras found in camera phones and laptop computers, use
automatic exposure mechanisms that provide no manual override or
any means to manually adjust or even lock the exposure setting. Our
method is based on the linearity properties of light: superposition
and homogeneity, which can be used separately or together.
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Fig. 3: Top Left: An images describing the resulting CMat from the superposigram
constraints provided by the image sequence shown in Fig 1. Top Right: The recov-
ered partial response function from the CMat on the left. Bottom Left: The aggregate
CMat from the original superposition constraints together with the homogeneity con-
straints from a sequence of ten differently exposed images. Bottom Right: The plot
shows the response function solution provided by the aggregate CMat overlaid on the
partial response function solution. The plot also shows a the periodic solution obtained
from using one image pair alone, illustrating success of the method in breaking the self-
similar ambiguity.
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