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ABSTRACT
In this paper a novel non-linear subspace method for face
verification is proposed. The problem of face verification
is considered as a two-class problem (genuine versus impos-
tor class). The typical Fisher’s Linear Discriminant Analy-
sis (FLDA) gives only one or two projections in a two-class
problem. This is a very strict limitation to the search of dis-
criminant dimensions. As for the FLDA forN class problems
(N is greater than two) the transformation is not person spe-
cific. In order to remedy these limitations of FLDA, exploit
the individuality of human faces and take into consideration
the fact that the distribution of facial images, under differ-
ent viewpoints, illumination variations and facial expression
is highly complex and non-linear, novel kernel discriminant
algorithms are proposed. The new methods are tested in the
face verification problem using the XM2VTS database where
it is verified that they outperform other commonly used kernel
approaches.

Index Terms— Kernel techniques, Face Verification,
Fisher’s Linear Discriminant Analysis

1. INTRODUCTION

In this paper, face verification is modelled as a two-class prob-
lem. The motivations of such a modelling are supported by
various methods that take into account the individuality of
facial features [6, 1, 2]. The use of person-specific graphs
with nodes placed at discriminant facial landmarks greatly
improves the performance of elastic graph matching in frontal
face verification [6]. In [1] it has been shown that discrim-
inant non-negative matrix factorization methods with class-
specific bases perform better than other approaches with com-
mon bases. Additional details about modeling face verifica-
tion as a two-class problem are given in [2] introducing the
class-specific Fisherfaces.
The methods proposed in this paper exploit the individu-

ality of the human face in order to find a nonlinear subspace
representation with enhanced discriminant power. In detail, in
this paper we propose a novel class-specific discriminant cri-
terion, which when optimized, it leads to a discriminant low
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dimensional representation of faces. Furthermore, in order
to represent better the face in various poses, we combine the
proposed criterion with kernel techniques and we present a
technique for optimizing the criterion in arbitrary dimensional
Hilbert spaces leading to a novel Kernel Discriminant Analy-
sis. However, the main contribution of the proposed discrim-
inant analysis, is that it tries to remedy some of the limita-
tions of the kernel methods based on the Fisher’s discrimi-
nant criterion that provide very limited number of features in
two-class problems. For example the so-called Complete Ker-
nel Fisher Discriminant Analysis (CKFDA) [3] only two dis-
criminant dimensions are found in two-class problems. This
space of very limited number of dimensions may be proved to
be insufficient for correctly representing facial images. The
proposed approach discovers a low dimensional space with
the number of dimensions to be proportional to the number
of images available for training. Experiments conducted in
the XM2VTS database using facial images at various poses
demonstrate the potential of the proposed methods.

2. DISCRIMINANT CRITERION

Before we develop the new optimization problem, we will in-
troduce some notation that is used throughout this paper. Let
r be the reference person that will be used for defining the per-
son specific algorithms. Let Ur be the class of genuine vec-
tors and Ir be the class of impostor vector. Let LG, and LI

be the numbers of genuine and impostor images in the train-
ing set for the person r, respectively. Usually, the number of
genuine images is much smaller than the number of impostor
images for a reference person r. Thus, in the following anal-
ysis we will work under the assumption that LI > LG. Let
L = LG + LI be the total number of images in the training
database.
The genuine vectors zi of the person r will be denoted

as ρi = zi (zi ∈ Ur), while the impostor images zi of
the person r will be denoted as κi = zi (zi ∈ Ir). Let
also ρ̄ = 1

LG

∑LG

i=1 φ(ρi), κ̄ = 1
LI

∑LI

i=1 φ(κi) and m̄ =
1
L

∑L
i=1 φ(zi) be the mean vectors of the genuine class, the

impostor class and total mean of the facial vectors in the Hilbert
space F . Any function k satisfying the Mercer’s condition
can be used as a kernel. The dot product of φ(zi) and φ(zj)
in the Hilbert space can be calculated without having to eval-
uate explicitly the mapping φ(·) as k(zi, zj) = φ(zi)

T φ(zj)
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(this is also known as the kernel trick [4]. The kernels that
have been used in our experiments have been the polynomial
kernels k(x,y) = φ(x)T φ(y) = (xT y + 1)d where d is the
degree of the polynomial.

2.1. The Novel Kernel Criterion

The criterion that is used in this paper, will be formed us-
ing a simple similarity measure in the Hilbert space F . This
measure quantifies the similarity of a given feature vector z
to the reference facial class r in the subspace spanned by the
columns of the matrix Ψ = [ψ1 . . . ψK ], with ψi ∈ F . The
L2 norm in the reduced space spanned by the columns ofΨ,
is used as similarity measure:

dr(z) = ||ΨT (φ(z) − ρ̄)||2

= ΨT (φ(z) − ρ̄)(φ(z) − ρ̄)T Ψ

=
∑K

i=1 ψT
i (φ(z) − ρ̄)(φ(z) − ρ̄)T ψi

(1)

which is actually the Euclidean distance of a projected sam-
ple to the projected mean of the reference class and is one of
most usually employed measures in pattern recognition ap-
plications (i.e, distance from the center of the class). This
distance should be low for the samples of the genuine class
and should be high for the samples of the impostor class.
Now, in order to find a discriminant linear transformation

inF we demand that the sum of the similarity measures dr(z)
for all z ∈ Ir (impostor similarity measures) to be maximized
while minimizing the sum of the similarity measures dr(z) for
all z ∈ Ur (client similarity measures). Thus, the discriminant
projections ψi ∈ F are found in the training set as the ones
that maximize the ratio:

DΦ(Ψ) =
∑

z∈Ir
dr(z)∑

z∈Ur
dr(z)

=
∑

z∈Ir

∑
K

i=1
ψT

i
(φ(z)−ρ̄)(φ(z)−ρ̄)T ψ

i∑
z∈Ur

∑
K

i=1
ψT

i
(φ(z)−ρ̄)(φ(z)−ρ̄)T ψ

i

= tr[ΨT
W

Φ
Ψ]

tr[ΨT BΦΨ]
.

(2)

whereWΦ =
∑

z∈Ir
(φ(z) − ρ̄)(φ(z) − ρ̄)T ,

BΦ =
∑

z∈Ur
(φ(z) − ρ̄)(φ(z) − ρ̄)T and tr[M] is the trace

of matrixM.

2.2. Two Step Optimization method for the Discriminant
Criterion

In the Hilbert space F it is almost impossible to make BΦ

invertible (the matrix BΦ is invertible if the dimension of the
feature vectors is smaller than the number of the genuine im-
ages). Thus, vectorsψi such thatψ

T
i BΦψi = 0 always exist.

These vectors are very effective for discrimination if they sat-
isfy ψT

i WΦψi > 0 at the same time, since for these vectors
it is valid that DΦ(Ψ) → +∞. In such a case, the criterion
(2) degenerates into the following:

DΦ
b (Ψ) = tr[ΨT WΦΨ] (Ψ = [. . . ψi . . .], ||ψi|| = 1).

(3)

Using the criteria DΦ
b and DΦ two kind of discriminant

features can be calculated. We will call the discriminant pro-
jections of the criterion DΦ as regular while the ones of the
criterion DΦ

b will be called irregular.

2.2.1. Reducing F

The first step is to reduce the Hilbert space F by using a
linear mapping without discarding any discriminant informa-
tion. This mapping is comprised of the non-null eigenvectors
of SΦ = WΦ + BΦ. The non-null eigenvectors of SΦ can be
calculated using the kernel matrices:

[K1]i,j = φ(ρi)
T φ(ρj) = k(ρi,ρj)

[K2]i,j = φ(κi)
T φ(ρj) = k(κi,ρj)

[K3]i,j = φ(ρi)
T φ(κj) = k(ρi,κj) = KT

2

[K4]i,j = φ(κi)
T φ(κj) = k(κi,κj).

(4)

The kernel matrixK is the total kernel function defined as:

K =

[
K4 K2

K3 K1

]
(5)

and E is defined as:

E =

[
K2

K3

]
. (6)

First SΦ can be written as:

SΦ = WΦ + BΦ

=
∑

z∈Ir
(φ(z) − ρ̄)(φ(z) − ρ̄)T

+
∑

z∈Ur
(φ(z) − ρ̄)(φ(z) − ρ̄)T

=
∑

z∈U
(φ(z) − ρ̄)(φ(z) − ρ̄)T =

∑L
i=1 μ̃iμ̃

T
j

= ΦsΦ
T
s

(7)

where μ̃i = φ(zi) − ρ̄ and Φs = [μ̃1 . . . μ̃L]. Only the first
n (with n ≤ L − 1) positive eigenvalues of SΦ are of interest
to us. These eigenvectors can be indirectly derived from the
eigenvectors of the matrixΦT

s Φs (L × L).
The ΦT

s Φs can be expanded as:

ΦT
s Φs = K−

1

LG
E1LGL−

1

LG
1LLG

E+
1

N2
G

1LLG
K11LGL.

(8)
where 1LLG

is aL×LG matrix with elements all equal to one.
Let λs

i and ci(i = 1 . . . LI) be the i-th eigenvalue and the cor-
responding eigenvector of ΦT

s Φs, sorted in ascending order
of eigenvalues. It’s true that (ΦsΦ

T
s )(Φs�i) = λs

i (Φsci).
Thus, �i = Φsci are the eigenvectors of SΦ. In order to
remove the null space of SΦ, the first n ≤ LI − 1 eigen-
vectors (given in the matrix Π = [�1 . . . �n] = ΦsC,
whereC = [c1 . . . cn]), whose corresponding eigenvalues are
non zero, should be calculated. Thus, ΠT SΦΠ = Λs, with
Λs = diag[λs

1
2 . . . λs

n
2], a n × n diagonal matrix. The or-

thonormal eigenvectors of SΦ are the columns of the matrix:

Π1 = ΦsΠΛs
−1/2. (9)
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It can be easily proven that SΦ is compact and self-adjoint
and thus the columns of the matrix Π1 form an orthonormal
basis inF . We define the two orthogonal complementary sub-
spaces O and O⊥ of F (F = O ⊕O⊥). O is spanned by the
column vectors ofΠ1. Its orthogonal O⊥ is the one that cor-
responds to the null space of SΦ. We can now easily prove
that there is no discriminant information in O⊥ in respect to
the criterionsDΦ andDΦ

b , since for the vectors ζ ∈ O⊥ it is
valid that ζT BΦζ = 0 and ζT WΦζ = 0 at the same time.
Thus, all the discriminant information lie inside O.
Now, based on the previous remarks, the two alternative

discriminant criterions can be defined as:

D(H) =
tr[HT WH]

tr[HT BH]
(10)

and

Db(H) = tr[HT WH] (||ηi|| = 1 and ηT
i Bηi = 0) (11)

whereW = ΠT
1 WΦΠ1, B = ΠT

1 BΦΠ1 and
H = [. . . ηi . . .] with ηi ∈ �n.

2.2.2. Feature Extraction

Let Ξ = [ξ1, . . . , ξn] be all the eigenvectors of B. The first
q = LG − 1 eigenvectors correspond to the nonzero eigen-
values (range space). The two orthogonal complementary
subspaces of B are defined as OB = span{ξ1, . . . , ξq} and
O⊥B = span{ξq+1, . . . , ξn}. Thus, �n = O⊥B ⊕ OB . In the
space OB we seek for the regular discriminant projections,
while in the space O⊥B we seek for the irregular discrimi-
nant projections. We can now summarize the previous pro-
cedure for learning the class-specific discriminant transform.
For each client r, the following steps should be applied:

Step 1 . Calculate the eigenvalues and the eigenvectors of
ΦT

s Φs and project each facial vector zi ∈ U as:

ΠT
1 φ(zi) = (ΠΛs

−1/2)T ΦT
s φ(zi)

= (ΠΛs
−1/2)T [μ̃1 . . . μ̃LI

]T φ(zi)

= (ΠΛs
−1/2)T ([φ(z1) . . . φ(zL)]T φ(zi)

−[ρ̄ . . . ρ̄]T φ(zi))

= (ΠΛs
−1/2)T ([φ(z1) . . . φ(zL)]T φ(zi)

− 1
LG

1LLG
[φ(ρ1) . . . φ(ρLG

)]T φ(zi))

= (ΠΛs
−1/2)T ([k(z1, zi) . . . k(zL, zi)]

T

− 1
LG

1LLG
[k(ρ1, zi) . . . k(ρLG

, zi)]).

Step 2 . In the new space calculateW and B. Perform eige-
nanalysis to B and obtain a set of orthonormal eigen-
vectors. Create the two matrices Ξ1 = [ξ1, . . . , ξq]
and Ξ2 = [ξq+1, . . . , ξn] where q = rank(B) that cor-
respond to non-zero and zero eigenvalues, respectively.

Step 3 . Calculate W̃ = ΞT
1 WΞ1, B̃ = ΞT

1 BΞ1 and find
the regular discriminant features using the matrix J̃ =

[ζ̃1 . . . ζ̃q] whose columns are the eigenvectors of
B̃−1W̃ in descending order of the eigenvalues.

Step 4 . Calculate Ŵ = ΞT
2 WΞ2 and find the irregular dis-

criminant projections using the matrix T̃ = [τ̃ 1 . . . τ̃ q]

whose columns are the orthonormal eigenvectors of Ŵ.

After following these steps the regular discriminant pro-
jection for a test facial vector y are given by:

ý1 = (ΠΛs
−1/2J̃Ξ1)

T ([k(z1,y) . . . k(zL,y)]T−
− 1

LG
1LLG

[k(ρ1,y) . . . k(ρLG
,y)]).

(12)

The number of dimensions of the regular discriminant vec-
tors is less or equal to LG − 1. The irregular discriminant
projection for the facial vector y is given by:

ý2 = (ΠΛs
−1/2T̃Ξ2)

T ([k(z1,y) . . . k(zL,y)]T−
− 1

LG
1LLG

[k(ρ1,y) . . . k(ρLG
,y)]).

(13)
The number of dimensions of the feature vector ý2 is less
or equal to LI − 1. Two distinct similarity measures can be
defined. The first corresponds to the regular discriminant in-
formation:

dr(ý1) = ||ý1 − ρ̄1||
2 (14)

where ρ̄1 is the regular discriminant vector of ρ̄. The second
similarity measure corresponds to the irregular discriminant
information:

dr(y) = ||ý2 − ρ̄2||
2 (15)

where ρ̄2 is the irregular discriminant vector of ρ̄. The two
similarity measures can be used in an independent fashion or
can be fused using empirical or discriminant fusion rules [1,
3].

3. EXPERIMENTAL RESULTS AND DISCUSSION

The performance of a verification system is often quoted by a
particular operating point of the Receiver Operating Charac-
teristic (ROC) where False Rejection Rate (FAR)=False Ac-
ceptance Rate (FRR). This operating point is called Equal Er-
ror Rate (EER). The EER will be used to quantify the perfor-
mance of the tested methods. The specific database contains
four recordings of 295 subjects taken over a period of four
months. Each recording contains a speaking head shot and a
rotating head shot. In the specific procedure only the rotation
shots have been used.
The testing database comprises of 120 subjects, 4 record-

ing sessions and one shot of moving head per recording ses-
sion. We should note here, that each session in the XM2VTS
[5], as well as in the video XM2VTS database, has been cap-
tured with one month time intervals between each other. The
database was randomly divided into 60 clients and 60 impos-
tors. 2 sessions out of 4 of the clients’ class where used for
training the system, while 1 session was used for evaluation
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Fig. 1. Data samples used for the experimental procedure.
Each row represents the images taken from one session to
consist one person’s class.

and 1 for testing. For the impostors, 2 sessions were used
for evaluation and 2 for testing. The number of images taken
from each session for one person was 10. So, for the training
set 1200 images were used. The number of images that were
used was 1200 for the evaluation and the test set respectively.
Thus, we have a total of 600 client claims and 36000 impos-
tor claims for both, the evaluation and the test sets. A simi-
larity measure dr(y) between faces is found in all the tested
methods. In the proposed approaches the similarity measures
were the ones defined in (14) and (15). In order to reject or
accept an identity claim, a threshold should be used on this
similarity measure. The methods in [6, 1] have been used
for class-specific threshold selection. We have tested Kernel
Principal Component Analysis (KPCA), multiclass CKFDA
and class-specific CKFDA. The multiclass CKFDA gives 59
regular features and 59 irregular features using common bases
for all the classes. The class specific CKFDA produces 2 fea-
tures, one for the regular discriminant direction and one for
the irregular one.
In Figure 2, the EERs for the test set are plotted for various

polynomial kernel parameters for the multiclass KPCA [3],
multiclass and class-specific CKFDA [3] approaches (regular
and irregular information) and the proposed kernel discrim-
inant analysis for polynomial kernels of power from 1 to 6.
The best EER achieved for these methods has been measured
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Fig. 2. ERR for KPCA, multiclass and two-class CKFDA
methods (regular and irregular space) and the proposed tech-
nique with polynomial kernels.

at about 15% for the multiclass CKFDA while for the class
specific CKFDA has been measured more than 30%. As can
be seen the performance of the two-class variants of CKFDA
is worse than the multiclass CKFDA. This is attributed to the
very limited feature space that is provided by the two-class
CKFDA. The best EER that has been achieved by our method
was measured at about 5.5% which is a very good perfor-
mance considering that the database contains faces at various
poses.

4. CONCLUSION

Novel kernel based methods for discriminant feature extrac-
tions in two-class problems has been defined. The novel meth-
ods overcome the problems of the typical kernel-FLDA and of
other approaches (like CKFDA) that give a very limited dis-
criminant subspace spanned by one or two discriminant direc-
tions for two-class problems. The proposed approaches have
been tested in face verification using facial images under vari-
ous poses, where they show to outperformmany other popular
kernel methods.
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