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ABSTRACT

As a major family of semi-supervised learning, graph based
semi-supervised learning methods have attracted lots of in-
terests in the machine learning community as well as many
application areas recently. However, for the application of
video semantic annotation, these methods only consider the
relations among samples in the feature space and neglect an
intrinsic property of video data: the temporally adjacent video
segments (e.g., shots) usually have similar semantic concept.
In this paper, we adapt this temporal consistency property of
video data into graph based semi-supervised learning and pro-
pose a novel method named Temporally Consistent Gaussian
Random Field (TCGRF) to improve the annotation results.
Experiments conducted on the TRECVID data set have demon-
strated its effectiveness.

Index Terms— video annotation, temporal consistency,
graph based method

1. INTRODUCTION

With the decreased cost of storage devices, high transmission
rates and improved compression techniques, digital videos
are prevailing at an ever increasing rate. The demand for
solutions to manage large scale video database is increasing
tremendously. It is a common theme to develop the automatic
analysis techniques for deriving metadata for describing in-
formation in the content at both syntactic and semantic lev-
els. With the help of these metadata, the tools and systems
for video retrieval, summarization, delivery and manipulation
can be created effectively.
Automatic semantic annotation (or we may call it concept

detection or high-level feature extraction) of video or video
segments is an elementary step for obtaining these metadata.
For general automatic video annotation methods, statistical
models are built from manually pre-labeled samples, and then
the labels of unlabeled samples can be estimated using these
models. However, the major obstacle of this process is that,
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the labeled data is limited, so that the distribution of the la-
beled data can not well represent the distribution of the entire
data set (include labeled and unlabeled). This kind of insuffi-
ciency of labeled data usually leads to inaccurate annotation
results.
Semi-supervised learning techniques [5], which attempt

to learn from both labeled and unlabeled data, are promis-
ing to solve the above problem. As a major family of semi-
supervised learning, graph basedmethods have attracted more
andmore researchers’ attention recently [13][14][12][4]. They
have been successfully applied in text categorization [3] and
image annotation [8]. Meanwhile, some graph based methods
have also been proposed for video annotation. In [11], a man-
ifold ranking method based on feature selection is proposed
for video concept detection. An anisotropic manifold rank-
ing method is proposed in [9] for video semantic annotation,
where the authors analyze the graph-based semi-supervised
learning methods from the view of PDE based diffusion.
However, existing graph based methods neglect an im-

portant and intrinsic property of video data called temporal
consistency, that is, with high possibility temporally adjacent
video segments (e.g., shots) will be related to a same seman-
tic concept. For example, if a shot in the video matches the
concept sports, most likely a few shots previous and next
to this shot are also about sports. The authors have shown
in [10] that this property is an important clue for semantic
video annotation. In this paper, we adapt the temporal consis-
tency assumption into graph based semi-supervised learning
by combining the temporal consistency and feature space sim-
ilarity, and propose a novel method named Temporally Con-
sistent Gaussian Random Field (TCGRF) for video annota-
tion. Experiments conducted on the TRECVID [1] data set
show that this approach significantly improves the annotation
performance compared with existing Gaussian Random Field
(GRF) [14] based methods.
The rest of this paper is organized as follows. In Section 2,

we detail the algorithm of TCGRF; and Section 3 presents the
regularization framework for TCGRF; Experiments are intro-
duced in Section 4, followed by the conclusion remarks in
Section 5.
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2. TEMPORALLY CONSISTENT GAUSSIAN
RANDOM FIELD

Let X = {x1, x2, . . . , xn} be a set of n samples (i.e., video
shots in our application) in Rm (feature space of m dimen-
sions). The first l points are labeled as y = [y1, y2, . . . , yl]

T

with yi ∈ {0, 1} (1 ≤ i ≤ l) and the remaining points xu (l+
1 ≤ u ≤ n) are unlabeled. Consider a connected undirected
graph G = (V, E) with node set V = L

⋃
U correspond-

ing to the n data points, where the node set L = {1, . . . , l}
contains labeled points and node set U = {l + 1, . . . , l + u}
are unlabeled ones. The edges E are weighted by the n × n

affinity matrixW with entries

wij = exp{−
‖xi − xj‖

2

2σ2
} (1)

when j �= i and wii = 0. This is from a basic assumption
in graph based semi-supervised learning: nearby points are
likely to have the same label.
Let vector f = [f1, f2, . . . , fl, fl+1, . . . , fn]T = [fTL , fTU ]T

denote the predicted labels ofX , where the superscript T de-
notes transpose. Another assumption in graph based semi-
supervised learningmethod is the labels should vary smoothly
in the feature space. So GRF method [14] proposed to mini-
mize the energy function

Q(f) =
1

2

∑
1≤i,j≤n

wij(fi − fj)
2 (2)

subject to fL = y. It has been shown in [14] that the min-
imum energy function f = argminfL=yQ(f) is harmonic.
Therefore, it satisfiesΔf = 0 on the unlabeled data points U ,
and is equal to y on the labeled data points L. Here Δ is the
combinatorial Laplacian [6] with matrix formΔ = D −W ,
where W is the affinity matrix and the D = diag(di) is the
diagnal matrix with entries di =

∑n

j=1
wij . The harmonic

property results in that the value of f at each unlabeled point
is the weighted average of f at other points:

fi =
1

di

n∑
j=1

wijfj i ∈ U. (3)

Although GRF method has been well applied in text cat-
egorization and image annotation, for video data, it only con-
siders the relations among samples in the feature space and
neglect the temporal consistency. We believe that temporal
consistency provides valuable contextual clues to video se-
mantic annotation.
According to the temporal consistency, nearby points over

the temporal order may have similar labels. We define a mea-
surement of the probability that two samples have the same
label in temporal order index i and j:

hij = exp{−
(i− j)2

2σ2
t

}, (4)

where σt is a scale parameter over the temporal order.
Define the following energy function:

R(f) =
1

2

∑
1≤i,j≤n

hij(fi − fj)
2, (5)

the low energy corresponds to a slowly varying function over
the temporal order. Minimizing R(f) subject to fL = y also
results in harmonic function f :

fi =
1

d
′

i

n∑
j=1

hijfj , i ∈ U (6)

where d
′

i =
∑n

j=1
hij .

Here we adapt the temporally consistency into GRF by
combining the temporal order adjacency and the feature space
similarity. Then we have

fi = (1− α)
1

di

n∑
j=1

wijfj + α
1

d
′

i

n∑
j=1

hijfj , i ∈ U

=

n∑
j=1

((1− α)
wij

di

+ α
hij

d
′

i

)fj

=

n∑
j=1

pijfj (7)

where pij = (1 − α)
wij

di
+ α

hij

d
′

i

, and α controls the effec-
tiveness of the temporal consistency among the two effects.
Representing (7) in matrix form, we have

f = ((1 − α)D−1W + αD′−1H)f = P f (8)

subject to fL = y, where P = (1 − α)D−1W + αD′−1H ,
D = diag(di), D′ = diag(d

′

i). Split the matrix P after the
l-th row and l-th column

P =

[
PLL PLU

PUL PUU

]
. (9)

Substitute theP in (8) with Eq.(9), substitute the fwith [fTL, fTU ]T ,
and solve the obtained equations we will obtain the optimal
labels for the unlabeled samples in matrix form as follows

f∗U = (I − PUU )−1PULy, (10)

where I is the identity matrix. From Eq.(10), each sample
will be assigned a real-value score indicating the degree of
belonging to a specific concept.
Consequently, the algorithm of TCGRF is summarized in

Algorithm 1.

3. REGULARIZATION FRAMEWORK

In this section we will show that our method could also be
obtained from a regularization framework. The cost function
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Algorithm 1 TCGRF
1: Calculate the affinity matrices W and H over feature
space and temporal order respectively;

2: Construct matrix P = (1 − α)D−1W + αD′−1H in
which D is a diagonal matrix with its (i, i)-element
equals to the sum of the i-th row of W , and D′ is a di-
agonal matrix with its (i, i)-element equals to the sum of
the i-th row ofH ;

3: Split the matrix P into PLL, PLU , PUL and PUU accord-
ing to (9);

4: Predict the real-value labels for unlabeled samples by
f∗U = (I − PUU )−1PULy.

associated with f is defined as:

E(f) =
1− α

2

∑
1≤i,j≤n

wij

di

(fi − fj)
2 (11)

+
α

2

∑
1≤i,j≤n

hij

d′i
(fi − fj)

2 +∞
∑

1≤i≤l

(fi − fj)
2

Re-write it into a matrix form:

E(f) = (1− α)fT (I −D−1W )f+ αfT (I −D′−1H)f
+ ∞(fL − y)T (fL − y) (12)

Minimizing the above cost will result in the optimal f∗:

f∗ = argminfE(f) (13)

Differentiating E(f) with respect to f, we will obtain:

(1− α)(I −D−1W )f+ α(I −D′−1H)f+∞(fL − y) = 0,

which can be transformed to:

f = (1− α)D−1W f+ αD′−1Hf. (14)
s.t. fL = y

This is the same as we obtained in formula (8). It demon-
strates we can obtain the same result of TCGRF from this
regularization framework.

4. EXPERIMENTAL RESULTS

In the following experiments, we use the video data set of
the TRECVID 2005 corpus, which is consisted of 170 hours
of TV news videos from 13 different programs in English,
Arabic and Chinese. After automatic shot boundary detec-
tion, the development (DEV) set contains 43907 shots, and
the evaluation (EVAL) set contains 45766 shots. Some shots
are further segmented into sub-shots, and there are 61901 and
64256 sub-shots in DEV and EVAL set, respectively.
The high-level feature detection task of TRECVID is to

detect the presence or absence of 10 predetermined bench-
mark concepts in each shot of the EVAL set. The 10 semantic

Fig. 1. The exemplary key-frames of the ten concepts.

concepts are: walking running, explosion fire, maps, flag-US,
building, waterscape waterfront, mountain, prisoner, sports
and car. For each concept, systems are required to return
ranked-lists of up to 2000 shots, and system performance is
measured via non-interpolatedmean average precision (MAP),
which is a standard metric for document retrieval.
The low level features we used here are: 225-D block-

wise color moments in LAB color space, which are extracted
over 5×5 fixed grid partitions, each block is described using 9
dimensional features; 144-D color correlogram in HSV color
space; 64-D color histogram in LAB color space. To avoid the
curse of dimensionality, we separate the features into two set:
Set 1 is with the color moments; Set 2 is with the correlogram
and the histogram. Experiments are conducted on the two sets
respectively and the results are finally combined through the
linear fusion scheme in [7].
Using TCGRF method, the 64256 sub-shots in EVAL set

are labeled as f(subshoti), and the sub-shots in the same shot
are merged using the ”max” rule:

f(shotm) = maxsubshoti∈shotm
{f(subshoti)} (15)

Then the shot list is ranked according to f(shotm). We com-
pare the experimental results of TCGRF and GRF [14] over
the two feature sets respectively and the fusion results, which
are shown in Table 1 ∼ 3. The evaluations are performed
when all the parameters (for both TCGRF and GRF) are tuned
to be nearly optimal by 5-fold cross-validations. From these
comparisons, we can see that TCGRF improves GRF for 9
concepts out of 10 concepts, except for the concept maps.
The improvement for the concepts sports, walking running
and flag-US is rather significant, while the improvement for
building and explosion fire is trivial. This is due to the fact
that the temporal consistency in sports, walking running and
flag-US is much stronger than that in explosion-fire, maps and
building.
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Table 1. Comparisons of results over feature set 1
Concept GRF TCGRF Improvement
walking running 0.121 0.128 + 20.7%
explosion fire 0.048 0.0484 + 0.83%
maps 0.458 0.458 0%
flag-US 0.112 0.143 + 27.7%
building 0.4049 0.4051 + 0.05%
waterscape waterfront 0.323 0.336 + 4.02%
mountain 0.304 0.324 + 6.58%
prisoner 0.00018 0.00047 + 161%
sports 0.265 0.369 + 39.2%
car 0.244 0.256 + 4.92%
MAP 0.228 0.249 + 9.21%

Table 2. Comparisons of results over feature set 2
Concept GRF TCGRF Improvement
walking running 0.099 0.126 + 27.3%
explosion fire 0.035 0.035 0%
maps 0.432 0.432 0%
flag-US 0.032 0.039 + 21.9%
building 0.339 0.348 + 2.65%
waterscape waterfront 0.306 0.329 + 7.52%
mountain 0.284 0.311 + 9.51%
prisoner 0.00023 0.0005 + 117%
sports 0.214 0.297 + 38.8%
car 0.166 0.2 + 20.5%
MAP 0.191 0.212 + 11%

Table 3. Comparisons of the fusion results
Concept GRF TCGRF Improvement
walking running 0.143 0.169 + 18.2%
explosion fire 0.056 0.057 + 1.79%
maps 0.483 0.483 0%
flag-US 0.129 0.156 + 20.9%
building 0.457 0.464 + 1.53%
waterscape waterfront 0.351 0.364 + 3.70%
mountain 0.336 0.354 + 5.36%
prisoner 0.0003 0.0005 + 66.7%
sports 0.326 0.409 + 25.5%
car 0.257 0.266 + 3.50%
MAP 0.254 0.272 + 7.09%

5. CONCLUSIONS

A novel graph based method named TCGRF has been pre-
sented for automatic video semantic annotation. This method
takes the advantage of the temporal consistency property of
video data into graph based semi-supervised learning to im-
prove the video annotation results. Experiments conducted on
the TRECVID data set demonstrate that combining the tem-
poral consistency into the graph based semi-supervised meth-

ods significantly improves the annotation performance com-
pared with the normal graph based methods.
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