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ABSTRACT

Automatic record and review of actions in sports training ses-

sions is of great benefit to both coach and athlete. Many

coaching sessions involve repetition of particular actions to

hone technique, such as a swing from a tennis racket, golf

club, or cricket bat. These actions can be defined by unique

motion signatures. A method is proposed to parse the train-

ing video using motion into browse-able actions. The method

aims to avoid the intensive explicit computation of player sil-

houette and motion vector fields, allowing for a real-time, on-

line application on standard hardware.

Index Terms— Intrinsic, Motion, Estimation, Content-

based, Analysis, Sports, Coaching

1. INTRODUCTION

One-on-one coaching sessions are vital to athletic training,

where technique is improved and perfected through repeti-

tion. Many actions involved in the training sessions have

characteristic motion patterns associated with them. Exam-

ples include golf swings, tennis serves and cricket bats. It is

vital to make the best use of the coaching session. This paper

presents novel methods to analyse implicit motion features,

and use it to parse live coaching video, allowing both player

and coach to record and review actions instantly, as shown in

Figure 1.

Motion is a good feature in parsing video, and has been

used to great effect in recent research. The Caviar project

[1, 2] has demonstrated the detection of unwanted activity in

surveillance camera footage. Local motion fields are anal-

ysed for characteristic patterns indicating questionable activ-

ity, such as fighting and running. This work allows important

footage to be brought to the attention of security guards, al-

lowing more productive use of surveillance feeds.

In [3], the 3D motion of golf swings are extracted from

single camera shots. A video segmentation step first performs

background / foreground segmentation to isolate the human

Thanks to Irish Research Council for Science, Engineering and Technol-

ogy for funding this research, Grant No. RS/2005/115.

Fig. 1. The objective of the application is to create a rapid

record and review system. Video is parsed in real-time during

the session for interesting actions. Examples of interesting

actions are shown on top, with unwanted actions below.

body. 3D motion information is found by an iterative fitting

process. The end result is 3D golf swing data that can be com-

pared numerically against other players. Research in player

motion analysis demonstrated in [4] also relies on an initial

silhouette segmentation stage.

The application presented in this paper requires rapid record

and review on “off the shelf” hardware. The Caviar project

[1, 2] currently relies on the calculation of a large motion

vector field. The work in [3] relies on an accurate segmenta-

tion step. These computationally expensive methods rule out

use in a real-time system. The presented work avoids explicit

calculation of motion fields and segmentations, allowing real-

time video parsing.

Section 2 and Section 3 introduce the algorithms for in-

trinsic motion analysis and interesting action classification re-

spectively. Section 4 discusses the results of the presented

work, and avenues for future work are presented in Section 5.

2. ANALYSING INTRINSIC MOTION

The repetitive actions performed in a coaching session typi-

cally exhibit a characteristic motion pattern. This is often seen

to be a “ready-then-action” pattern, an example for cricket is
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shown in Figure 2. In the case of a tennis serve, the set-up

or “ready” state is the throw of the ball into the air, and the

action burst is the over-arm swing that follows. The objective

is to detect “ready-then-action” pairs to signal the application

to begin and end recording. The computational burden of full

frame motion estimation can be substantial [5]. Efficient im-

plementations of motion estimators have long occupied the

image processing community. Of particular interest to this

paper is the use of integral projections [6], enabling real-time

motion estimation and compensation applications [7, 8].

Fig. 2. A typical “Ready-then-Action” motion pattern of a

cricket training session. The motion pattern begins with the

athlete inactive or setting-up for the action (left image, light-

grey on time-line). This is characterised by erratic motion,

usually outside the region where player motion is found. Fol-

lowing this, the athlete will get ready, anticipating what is to

follow, and is usually stationary or moving fairly little (cen-

tre image, middle-grey on time-line). When the action then

occurs, there is a sudden burst of motion (right, darker-grey

on time-line), and very quickly the athlete goes back to the

“ready” state.

In the scenario addressed in this paper, the image context

is reasonably constrained. Hence there is usually just a single

foreground object against a mostly static background. What is

interesting, is to consider alternatives to explicit segmentation

that may yield features which are sufficiently correlated with

motion to allow usable parsing. The inter-frame difference is

clearly a good feature, but it is too crude by itself for reliable

parsing. However, by acknowledging the constraint above, it

is possible to avoid the explicit segmentation schemes in [3, 4]

and [1, 2]. In this paper we introduce therefore the notion of

an “intrinsic motion” feature.

The integral projections of a frame are as follows.

ρh,n =
∑

v

In(h, v) and ρv,n =
∑

h

In(h, v) (1)

where In(h, v) is the intensity of the n-th image at loca-

tion (h, v). The difference between the projections Δρn is

correlated with vertical and horizontal motion. This is shown

in Figure 3, and Δρn is defined as follows.

Δρh,n = |ρh,n − ρh,n−1| and Δρv,n = |ρv,n − ρv,n−1| (2)

Observe Figure 3. What is interesting is that the “centre”

of the lobes of Δρn roughly tracks the horizontal and vertical

motion in the frames. Consider then that the value of Δρn at

a row is proportional to the probability of motion along that

row. Thus the expected value E(Δρn) or 〈Δρn〉 is the centre

mass of the lobe which is related to the location of the object.

This however is only the case when the motion of the cen-

tral athlete is the dominant motion in the scene. To lower

the impact of background motion on the later analysis, it is

desirable to “window” or weight the area of foreground mo-

tion. Taking the temporal average of the differential projec-

tions Δρn provides a distribution of the most likely regions

of motion in the projected direction, shown as follows.

Δρh,n =
1
n

∑

n

Δρh,n (3)

The expected value of Δρn corresponds to the centre of

the region exhibiting the most motion over time. In our con-

strained scene, this point should correspond to the centre of

the region of the athlete. Weighting of the projected fore-

ground athlete region is performed by applying 1D Gaussian

distributions gh,n and gv,n generated from data of Δρn. From

above, the mean μ is therefore the expected value of Δρn. μ
and variance σ are calculated as shown.

μh = 〈Δρh,n(x)〉 =
∑

x xΔρh,n(x)
∑

x Δρh,n(x)
(4)

σh = 〈Δρh,n(x2)〉 − 〈Δρh,n(x)〉 (5)

The calculation of the mean μ is the calculation of the

expectation value from a non-normalised distribution, in this

case, Δρh,n. The Gaussian weights gh,n and gv,n are ap-

plied to the original differential projections, shown as follows,

Δρw,h,n = Δρh,ngh,n, and illustrated in Figure 3.

We now want to use the refined player motion feature

(Δρw,n) to identify interesting action patterns. From the ex-

amples in Figures 3 and 4, there is an increase in the amount

of player motion from the “ready-to-action” stages. Observe

Δρw,n. The correlation between projection and motion has

been localised to the player region. If there are no lobes in

Δρw,n, there is probably little player motion, and similarly,

higher peaks indicate higher amounts of motion. The motion

amount a = (ah, av), where ah and av indicate horizontal

and vertical motion amounts respectively, is calculated as fol-

lows; ah =
∑

n Δρw,h,n(x). The vertical motion amount av

is calculated similarly.

3. IDENTIFYING INTERESTING PLAYER ACTIONS

Recall from Section 2 that it is required to identify “ready-

then-action” episodes in a real-world set-up. To allow the

application adapt to new environments and players, statistical

measurements are made upon a running history of the motion

sampled for a given duration in time t. The amount of motion
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Fig. 3. A flowchart of the algorithm. Projections ρn of the incoming images and their differences Δρn are shown in the top-

and bottom-left images. As can be seen, lobes in Δρn are correlated to motion in the image. Δρn is added to a running history

(top-right). Gaussian weights gn are derived from Δρn are shown in bottom-right. Resulting foreground player motion isolated

Δρw,n in bottom-middle.

a is modelled as a running process ma, and it is assumed the

distribution of the motion is Gaussian.

ma = [aτ−t, a(τ−t)+1, a(τ−t)+2, ..., aτ−1, aτ ] (6)

The range of samples is updated at each new frame, as

each new sample aτ arrives, the oldest aτ−t is removed. To

determine when to begin recording, a one-tailed Z test is per-

formed. The most recent sample aτ is tested for statistical sig-

nificance, at a given confidence level p, against the sequence

of samples ma, as follows:

C(p) <
aτ − μ(ma)

σ(ma)
(7)

where μ(ma) and σ(ma) are the mean and variance of

the sample sequence ma respectively, and C(p) is the upper

extent of the confidence interval for given probability p. In

this application, a p value of .99 was used.

If the current sample aτ tests as being significant, it is as-

sumed that an action is taking place. The beginning of the

action is found by looking backwards through the action sam-

ples ma to find a local minimum, indicating the end of the

“ready” state. The end of the action is determined when the

above Z test becomes insignificant, and a minimum amount

of time has passed.

4. EXPERIMENTAL RESULTS

A cricket training session was filmed in typical conditions in-

corporating multiple players at varying camera angles. As

a result, it contained many “real-world” problems such as

player occlusion, team-mates inadvertently walking across the

camera shot, background motion of the net behind the fore-

ground player, camera position and focus adjustment, and

high amounts of player motion during non-interesting actions.

A 20 min portion that session was used to estimate the

appropriate window size ma. Shown in Figure 5 are the pre-

cision and recall results for this portion with varying window

sizes of ma. From Figure 5, 60 taps is a reasonable estimate

of the optimum window size for ma. With that window size,

a different 30 min segment was parsed and Figure 4 shows a

trace of motion amount ah, and the corresponding parsed seg-

ments for a series of actions illustrated by the ground truth.

The measured precision and recall were both .83, implying a

usable system.

5. CONCLUSIONS

This paper has presented a new feature for detecting dominant

motion events in sports video. The success of the analysis

algorithm lies in the constrained image context outlined in

Section 2. However, several areas exist where improvements

can be made. Many false detections were made due to high

amounts of motion during set-up or “inactive” player states.
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Fig. 4. Results of the parsing of several actions. The “ready-

then-action” pattern can be observed in the motion amount,

with motion peaks corresponding to “inactive” player states

(centre image) and interesting actions (left and right images).

Note the distinct minima of the “ready” state preceding inter-

esting actions.

This could be corrected through analysis of the projected area

of the background (i.e. the non-foreground player) for cross-

over between foreground and background regions.

Unfortunately, the constrained image context is not al-

ways enforceable in the real world. To improve the accuracy

of action detection, the projections can be used to estimate

camera motion [7] and compensate accordingly. In the fi-

nal application, the shape of the foreground weights can be

used to indicate to the user if the current camera set-up will

give good results, i.e. elliptical shapes indicate a good fore-

ground segmentation. These additions will be addressed in

future work.
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