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ABSTRACT

This paper presents a novel depth-image coding algorithm that con-
centrates on the special characteristics of depth images: smooth re-
gions delineated by sharp edges. The algorithm models these smooth
regions using piecewise-linear functions and sharp edges by a straight
line. To define the area of support for each modeling function, we
employ a quadtree decomposition that divides the image into blocks
of variable size, each block being approximated by one modeling
function containing one or two surfaces. The subdivision of the
quadtree and the selection of the type of modeling function is op-
timized such that a global rate-distortion trade-off is realized. Ad-
ditionally, we present a predictive coding scheme that improves the
coding performance of the quadtree decomposition by exploiting the
correlation between each block of the quadtree. Experimental results
show that the described technique improves the resulting quality of
compressed depth images by 1.5–4 dB when compared to a JPEG-
2000 encoder.

Index Terms— Stereo vision, image coding, geometric model-
ing.

1. INTRODUCTION

The multiview video technology is based on video data recorded by
multiple synchronized cameras. This technology enables applica-
tions such as 3D-TV and free-viewpoint video. A free-viewpoint
video system provides the user the ability to interactively select a
viewpoint in the video scene. As a first step toward standardization
of multiview video technologies, algorithms addressing the problem
of transmission and rendering of 3-D data are currently investigated
by the Multiview Video Coding (MVC) group within MPEG. One
technique, i.e. the Depth Image Based Rendering (DIBR) algorithm,
has been recognized as a promising tool to perform not only the 3-
D rendering, but also the compression of multiview images. For
3-D rendering, the DIBR technique can be employed to synthesize
a virtual camera view at an arbitrary position. The idea followed
is to take a reference texture and a corresponding depth image as
input data (see Figure 1). Given the depth information, 3-D image-
warping techniques can subsequently be employed. For compres-
sion, the DIBR algorithm can be used to perform predictive coding
of views [1]. The predictive coding of views exploits the fact that
neighboring camera-views are highly correlated, resulting to a possi-
ble coding gain. Similarly, the prediction of the neighboring camera-
views is carried out using a reference texture and the corresponding
depth image. For an efficient transmission of the above-mentioned
reference texture and depth image, the coding of depth images needs
to be addressed.

Previous work on depth image coding has used a transform-
based algorithm derived from JPEG-2000 [2] and H.264 encoders [3].
However, transform coders have shown a significant shortcoming for

Fig. 1. Example texture image (left) and the corresponding depth

image (right). A typical depth image contains regions of linear depth

changes bounded by sharp discontinuities.

representing edges without deterioration at low bit-rates. Perceptu-
ally, such a coder generates ringing artifacts along edges that lead to
errors in pixel positions, which leads to fuzzy object borders in the
synthesized images. This remark is similar to recent conclusions [4]
related to depth compression results for multiview video coding.

The characteristics of depth images differ from normal textured
images. For example, since a depth image explicitly captures the
3-D structure of a scene, large parts of typical depth images depict
object surfaces. As a result, the input depth image contains various
areas of smoothly changing gray levels. Furthermore, at the object
boundaries, the depth image typically shows sharp edges. Following
these observations, we propose to model depth images by piecewise-
linear functions separated by straight lines. For this reason, we are
interested in an algorithm that captures and compactly approximates
these geometrical structures.
The problem of capturing image discontinuities has been extensively
studied. Example of coding algorithms are Bandelets [5] or Con-
tourlets [6]. Two alternative contributions based on Wedgelet [7]
and Platelet [8] are attractive for depth image coding. The Wedgelet
function, is defined as two piecewise-constant functions separated
by a straight line. This concept was later extended to piecewise-
linear functions and called Platelet functions. To define the area of
support of each modeling function, a quadtree segmentation which
recursively subdivides the image into blocks of variable size is em-
ployed. The advantages of both approaches, wedgelet and platelet
are twofold. First, edges location are explicitly transmitted to the
decoder and therefore available to the warping algorithm as well.
Special treatment of pixel-boundaries can thus be performed while
rendering the 3-D images. Second, the Wedgelet and Platelet-based
algorithms were specifically designed for denoising images, while
preserving the edges. Therefore, depth images are inherently de-
noised while performing the compression.

For our compression framework, we have adopted the Wedgelet
and Platelet signal-decomposition technique. In this way, we follow
the concept developed to code image texture using piecewise poly-
nomials [9] as modeling functions. More particularly, we consider
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four different piecewise-linear functions for modeling. The first and
second modeling function, a constant and a linear function, respec-
tively, are suitable to approximate smooth regions. The third and
fourth modeling function attempt to capture depth discontinuities
(the sharp edges), using two constant functions or two linear func-
tions separated by a straight line. These modeling functions are used
to approximate the image. To this end, the image is subdivided into
blocks of variable size using a quadtree decomposition. An inde-
pendent modeling function is subsequently selected for each node.
The selection of the most appropriate function is performed using
a cost function that balances both rate and distortion. In a similar
way, we determine the optimal decomposition of the image into a
quadtree with differing block sizes and the most appropriate quan-
tizer step-size. Finally, to reduce the redundancy between nodes in
the quadtree, a predictive coding technique is introduced. In more
detail, this means that we decorrelate the remaining dependencies
between each block to further enhance coding efficiency. Experi-
mental results show that our proposal yields up to 1–3 dB PSNR
improvement over a JPEG-2000 encoder.

The sequel of this paper is structured as follows. Section 2 in-
troduces the framework of our depth-image coding algorithm. In
Section 3, we describe a bit-allocation strategy that balances both
rate and distortion and Section 4 introduces a predictive coding tech-
nique. Experimental results are presented in Section 6 and the paper
concludes with Section 7.

2. DEPTH-IMAGE MODELING

In this section, we present a novel approach for depth-image coding
using the piecewise-linear functions mentioned in Section 1. The
concept followed is to approximate the image content using mod-
eling functions. In our framework, we use two classes of model-
ing functions: a class of piecewise-constant functions and a class of
piecewise-linear functions. For example, regions of constant depth
(e.g. flat surfaces not oriented in perspective) show smooth regions
in the depth image and can be approximated by a piecewise-constant
function. Secondly, planar surfaces of the scene like the ground
plane and walls of e.g. a room, appear as regions of gradually chang-
ing gray levels in the depth image. Hence, such a planar region
can be approximated by a single linear function. To specify the
2D-support of the modeling functions in the image, we employ a
quadtree decomposition that hierarchically divides the image into
blocks, i.e. nodes of different size. In some cases, the depth image
within one block can be approximated with one modeling function.
If no suitable approximation can be determined for the block, it is
subdivided into four smaller blocks. To prevent that many small
blocks are required along a discontinuity, we divide the block into
two regions separated by a straight line. Each of these two regions is
coded with an independent function. Consequently, the coding algo-
rithm chooses between four modeling functions for each leaf in the
quadtree:

• Modeling function f̂1: Approximate the block content with a
constant function;

• Modeling function f̂2: Approximate the block content with a
linear function;

• Modeling function f̂3: Subdivide the block into two regions
A and B separated by a straight line and approximate each
region with a constant function (a wedgelet function);

f̂3(x, y) =

j
f̂3A(x, y) = γ0A (x, y) ∈ A

f̂3B(x, y) = γ0B (x, y) ∈ B

• Modeling function f̂4: Subdivide the block into two regions
A and B separated by a straight line and approximate each

region with a linear function (a platelet function);

f̂4(x, y) =

j
f̂4A(x, y) = θ0A + θ1Ax + θ2Ay

f̂4B(x, y) = θ0B + θ1Bx + θ2By

The decision for each modeling function is based on a rate-distortion
decision criterion that is described in Section 3.

3. R-D OPTIMIZED BIT-ALLOCATION

In this section, we aim at providing details about the bit-allocation
strategy that optimizes the coding in a rate-distortion sense. Con-
sidering our lossy encoder/decoder framework, our aim is to opti-
mize the compression of a given image to satisfy a Rate-Distortion
(R-D) constraint. In our practical case, there are three parameters
that influence this trade-off: (1) the selection of modeling functions,
(2) the quadtree decomposition and (3) the quantization step-size
of the modeling-function coefficients. Thus, the problem statement
is to adjust each of the previous parameters such that the objective
R-D constraint is satisfied. The three aspects will be individually
addressed below.

To optimize these three parameters in an R-D sense, the adopted
approach is to define a cost function that combines both rate Ri and
distortion Di of the image i. Typically, the Lagrangian cost function

J(Ri) = Di(Ri) + λRi (1)

is used, where Ri and Di represent the rate and distortion of the
image, respectively, and λ is a weighting factor that controls the
rate-distortion trade-off. Using the above Lagrangian cost function
principle, the algorithm successively performs three independent pa-
rameters optimizations: (1) an independent selection of modeling
functions, (2) a quadtree structure optimization and (3) the quantizer
step-size selection. Let us address all three aspects now.

(1) Modeling function selection. First, we assume that an optimal
quadtree segmentation and quantizer step-size is provided. Since the
rate and distortion are additive functions over all blocks, an indepen-
dent optimization can be performed within the blocks. Therefore, for
each block, the algorithm selects the modeling function that leads to
the minimum coding cost. More formally, for each block, the algo-

rithm selects the best modeling function f̃ in an R-D sense according
to

f̃ = arg min
f̂j∈{f̂1,f̂2,f̂3,f̂4}

(Dm(f̂j) + λRm(f̂j)), (2)

where Rm(f̂j) and Dm(f̂j) represent the rate and distortion result-

ing from using one modeling function f̂j , respectively.

(2) Quadtree decomposition. To obtain an optimal quadtree de-
composition of the image, a well-known approach is to perform a
so-called bottom-up tree-pruning technique [10]. The guiding prin-
ciple is to parse the initial full tree from bottom to top and recursively
prune nodes (i.e. merge blocks) of the tree according to a decision
criterion.

The algorithm can be described as follows. Consider four chil-
dren nodes denoted by N1, N2, N3 and N4 that have a common par-
ent node which is represented by N0. For each node k, a Lagrangian
coding cost (DNk

+ λRNk
) k ∈ 0, 1, 2, 3, 4 can be calculated. Us-

ing the Lagrangian cost function, the four children nodes should be
pruned whenever the sum of the four coding cost functions is higher
than the cost function of the parent node. When the children nodes
are not pruned, the algorithm assigns the sum of the coding costs
of the children nodes to the parent node. Subsequently, this tree-
pruning technique is recursively performed in a bottom-up fashion.
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Fig. 2. Illustration for parameter encoding. The grey block X is cur-

rently being coded. DC-predictors are formed from the three num-

bered blocks (median of DC-coefficient of 1-B, 2, and 3-A). See

Section 4 for more information.

It has been proved [10] that such a bottom-up tree pruning leads to
an optimally pruned tree, thus in our case to an R-D optimal quadtree
decomposition of the image.

(3) Quantizer selection. So far, we have assumed that the coeffi-
cients of the modeling functions are scalar quantized prior to model
selection and tree-pruning. However, no detail has been provided
about the selection of an appropriate quantizer. Therefore, the prob-
lem is to select the optimal quantizer, denoted q̃, that meets the de-
sired R-D constraint. We propose to select the quantizer q̃ out of a
given set of possible scalar quantizers {q2, . . . , q8}, operating at 2–
8 bits per level, respectively. To optimally select the quantizer, we
re-use the application of the Lagrangian cost function and select the
quantizer q̃ that minimizes the Lagrangian coding cost of the image.

q̃ = arg min
ql∈{q2,...,q8}

Di(Ri, ql) + λRi(ql). (3)

Here, Ri(ql) and Di(Ri, ql) correspond to the global rate Ri and
distortion Di(Ri) in which the parameter ql is added to represent
the quantizer selection. To solve the optimization problem of Equa-
tion (3), the image is encoded using all possible quantizers and the
quantizer q̃ that yields the lowest coding cost Ji(Ri, q̃) = Di(Ri, q̃)+
λRi(q̃) is selected.

4. PREDICTIVE CODING OF PARAMETERS

In this section, the entropy coding of our coding algorithm is de-
scribed.

Quadtree structure. The quadtree is transmitted top-down, where
for each node the binary decision is made if this node is subdivided
or not. This decision is coded with an arithmetic encoder with fixed
probabilities. The probability that the node is subdivided is depend-
ing on the number of neighboring nodes at the same tree-level that
are also subdivided. The neighborhood context contains the left, the
top/left, and the neighboring top block, such that the number of sub-
divided neighbors is between 0–3. In the example of Fig. 2, the
number of subdivided neighbors is two.

Coding mode. The coding mode for each block in the quadtree is
coded with an input-adaptive arithmetic coder. Fixed probabilities
are not suitable here, since the selection of coding modes depends
on the bit-rate (more complex models for higher bit-rates).

DC coefficients. The DC coefficients of all input blocks are highly
correlated. For this reason, we predict their value from previously-
coded blocks and only code the residual value. More specifically, we
consider the three blocks that are adjacent to the top-left pixel in the

current block. The predictor is formed by the median of the DC coef-
ficients of these three blocks. If a block is subdivided into two mod-
els and hence has two DC coefficients, we use the DC-coefficient of
the region that is adjacent to the top-left pixel of the current block.
If the current block is represented with two functions, the predictor
is used for both. Note that this scheme always works properly, what-
ever coding modes have been used for these blocks. In the example
in Fig. 2, the DC coefficients of the functions 1-B, 2, and 3-A would
be used to build the predictor for block X.

The distribution of the residual signal after prediction subtrac-
tion is non-uniform. Consequently, coding of the residual value is
carried out with an input-adaptive arithmetic encoder. Note that the
residual value for an n-bit quantized image requires n + 1 bits, but
that this range can be folded onto itself such that only 2n different
symbols have to be considered.

AC coefficients The AC parameter corresponds to the first-order

parameters of the functions f̃2 and f̃4. For f̃4, this means θ1A, θ2A,
θ1B and θ2B . The statistics for these four parameters and the two

parameters for function f̃2 are non-uniformly distributed. This im-
plies the use of a variable-length coder as well. Therefore, the four
parameters were coded with an input-adaptive arithmetic encoder as
well.

5. ALGORITHM SUMMARY

The algorithm requires as an input the depth image and a weighting
factor λ that controls the R-D trade-off. The image is first recur-
sively subdivided into a full quadtree decomposition. All nodes of

the tree are then approximated by the four modeling functions f̂1,

f̂2, f̂3, f̂4. In a second step, the coefficients of the modeling func-
tions are quantized using one scalar quantizer ql. For each node of

the full tree, an optimal modeling function f̃ can now be selected
using Equation (2). Employing the tree-pruning technique described
in Section 3, the full tree is then pruned in a bottom-up fashion. The
second step of the algorithm (i.e. the coefficient quantization) is re-
peated for all quantizers ql ∈ {q2, . . . , q8} and the quantization that
leads to the lowest global coding cost is selected (see Equation (3)).
Subsequently, for each leaf of the tree, the quantized zero-order co-
efficients are predicted using the neighboring values as explained in
Fig. 2 and because the residual values are non-uniformly distributed,
they are arithmetically coded. Note that the first-order coefficients
satisfy a Laplacian distribution. If it would be a fixed Laplacian
distribution, we could have “simply” used a fixed probability table.
However, we do not know the exponential coefficient value, it is still
valid to use an adaptive encoder. For this reason, we encode these
coefficients using an adaptive arithmetic encoder.

Note that the rate-distortion optimization is based on fixed-length
codes to enable a fast computation. The final bit-rate is lower since
the parameters are further compressed with an arithmetic encoder.
The gain of the prediction scheme with the subsequent arithmetic
encoding yields between 0.5–1.5 dB of gain for a fixed bit rate.

6. EXPERIMENTAL RESULTS

We first conducted experiments using the depth image “Teddy” 1.
Experiments have revealed that the proposed algorithm can approx-
imate large smooth areas as well as sharp edges with a single node.
Second, the approximation capabilities were evaluated with the depth
image “Breakdancing” [11] 2. Subsequently, the resulting R-D per-
formances were compared to a JPEG-2000 encoder. Figures 3(a)

1available at http://www.middlebury.edu/stereo, accessed January 2007
2“Breakdancing” depth image number 0 of camera 0.
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and 3(b) show that the described encoder consistently outperforms
the JPEG-2000 encoder. For example, for the fixed-length coding
without coefficient prediction, improvements over JPEG-2000 are
as high as 2.8 dB at 0.1 bit per pixel for the “Teddy” image. For the
“Breakdancing” image, a gain of 1.3 dB can be obtained at 0.025 bit
per pixel. Using coefficient prediction, the figures are even clearly
better. For the “Teddy” image, the additional improvement is about
1 dB and for the “Breakdancing” image, the extra improvement is
approximately 0.3 dB, both measured at the previously mentioned
bit rates. Perceptually, the algorithm “Piecewise linear functions”
reconstructs edges of higher quality than the JPEG-2000 encoder
(see Figure 4(c)).
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Fig. 3. Rate-distortion curves for the “Teddy” 3(a) and “Breakdanc-

ing” 3(b) depth images, both for our algorithm and JPEG-2000.

7. CONCLUSIONS

We have presented a new algorithm for coding depth images that
exploits the smooth properties of depth signals. Regions are mod-
eled by piecewise-constant and piecewise-linear functions and they
are separated by straight lines along their boundaries. The algorithm
employs a quadtree decomposition to enable the coding of small de-
tails as well as large regions with a single node. The performance of
the full coding algorithm can be controlled by three different aspects:
(1) the choice the modeling function, (2) the level of the quadtree
segmentation (variable block size), and (3) the overall coefficient-
quantization setting for the image. All three aspects are individually
controlled by a Lagrangian cost function, in order to impose a global
rate-distortion constraint for the complete image. A predictive cod-
ing of the modeling-function parameters is employed to reduce the
remaining interblock correlation after quadtree decomposition. The
residual signals (i.e. coefficients) are arithmetically coded. For typ-
ical bit-rates (i.e. between 0.01 bit/pixel and 0.25 bit/pixel), experi-
ments have shown that the coder outperforms a JPEG-2000 encoder

(a) (b)

(c) (d)

Fig. 4. (a) Original “Breakdancing” depth image, (b) Magnified

view of the marked area, (c) Marked area coded with JPEG-2000

at 38.7 dB of PSNR, and (d) with piecewise-linear functions at

40.0 dB of PSNR Both results are obtained at 0.025 bit per pixel.

by 1.5−4 dB. The proposed algorithm is intended to be used in a 3-
D video coding system. We think that this proposal is more suitable
for handling the typical characteristics of a depth signal than con-
ventional transform coders, because the modeling functions comply
with the geometrical structures in depth images. However, further
study is needed to reduce the algorithm complexity.
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