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ABSTRACT

This paper addresses the problem of super-resolving a single

image and recovering the characteristics of the sensor using

a learning-based approach. In particular, the Point Spread

Function (PSF) of the camera is sought by minimizing the

mean Euclidean distance function between patches from the

input frame and from degraded versions of high-resolution

training images. Once an estimate of the PSF is obtained, a

supervised learning algorithm can then be used as is. Results

are compared with another method for blind super-resolution

by using a series of quality measures.

Index Terms— Super-Resolution, Image Quality, Point

Spread Function, Learning, Markov Random Fields

1. INTRODUCTION

The subject of super-resolution has elicited considerable in-

terest in the past few years. While standard approaches such

as regularization [1], Fourier methods [2] or Bayesian tech-

niques [3] have been widely used in the past, a lot of the re-

cent research in super-resolution focusses on learning-based

algorithms (e.g. [4, 5]). Initially, most methods using super-

vised learning techniques assumed knowledge of the camera

Point Spread Function (PSF) in order to construct the train-

ing set. Generalizations were then developed to account for

the case where the PSF is unknown [6, 7, 8]. However, most

of these methods for blind super-resolution do not aim at ob-

taining the PSF, but are simply able to super-resolve an image

without its knowledge. Therefore, there are very few analy-

ses on the capacities of a learning-based method to actually

recover the PSF, and on a quantification of its success.

In this paper, the problem of obtaining the PSF as well

as a super-resolved image is addressed, from a single input

frame and a set of high-resolution images from a database.

The particular framework chosen was developed originally in

[4]. Markov Random Fields (MRFs) are used to model a pair

of low/high resolution training images and a belief propaga-

tion algorithm is used to obtain the Maximum a Posteriori

estimate of the super-resolved image. While in the original

method the PSF has to be known in advance, in this paper,

the sensor PSF is also recovered from examples. The train-

ing dataset is artificially degraded with a parametric model

of a PSF, and the model best representing the input image is

chosen as the estimated PSF.

A framework based on a similar idea was developed in

[9]. However, in that study, the training dataset is degraded

with three different models and the PSF recovery amounts to

determine which model was preferred by the belief propaga-

tion algorithm. Here, the PSF recovery is performed prior to

the super-resolution process, to avoid potential tradeoffs be-

tween a good PSF and a good super-resolved image. Further-

more, here the super-resolution results are analyzed through

the use of various similarity measures, representing different

aspects of image quality: the quality of the signal, the per-

ceptual quality and the sharpness of edges. The use of these

measures is important not only to show an improvement in

quality with respect to the input image, but also to detect the

impact of various parameters on the results.

2. RECOVERING THE PSF FROM EXAMPLES

One of the main hypotheses of the method of [4] is that the

belief propagation process can be applied on a set of candi-

dates. Given an input image patch, a set of n closest patches

(in terms of the Euclidean distance) are found in the low-

resolution training database, previously obtained by blurring,

subsampling and reinterpolating the high-resolution training

images. Each input patch is thus associated with n pairs of

low/high training patches. These n pairs are modeled in a

MRF and the belief propagation algorithm determines which

of the pairs best represents the input patch1. The method pre-

sented here is inspired from this idea. Since Euclidean dis-

tance is used to determine a set of candidates, it is also used

to determine the best possible PSF.

Let an image Ilow be an input image to be super-resolved

and the set T = {T1, T2, ..., TNt
} be the NT high-resolution

training images. Breaking all images into patches, the set of

patches for Ilow is denoted by Ip = {p1, p2, ..., pK}, and the

set of patches for all images in T is: Tp = {tp1, tp2, ..., tpM}.

1The reader is referred to [4] for more details about the algorithm
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The training images in T are blurred with a Gaussian PSF of

variance σ2

b , and Ilow is assumed to have been blurred with a

Gaussian PSF of unknown variance σ2
t .

What is proposed here is to obtain the PSF parameter only

using the Euclidean distance between input and training local

patches. The Mean Euclidean Distance (MED) between the

training dataset and the input patches is calculated for a series

of blurring parameters σ2

b . The parameter giving the lowest

MED will be the recovered parameter σ2
r . In other words, the

MED for a parameter σ2

b is:

D(σ2

b ) =
1

N

∑

i

d(pi(σ
2

t ), tci
(σ2

b )), (1)

where σ2
t is the true variance, d(pi, tci

) is the Euclidean dis-

tance between input patch p at location i and its corresponding

closest candidate tci
in the training database. Therefore, for a

series of σ2

b , the recovered parameter σ2
r is:

σ2

r = argmin
σ2

b

D(σ2

b ). (2)

To obtain the minimum of the function, a Golden Section

Search (GSS) [10] was chosen. Given a range within which

the true solution is assumed to lie, the function is sampled

at values equidistant from both ends of the range. Given the

output of the function, the range is narrowed and the process

continues until a predefined tolerance is reached.

However, to avoid local minima and to limit the number

of computations, the initial range must be fairly narrow. The

work presented in [9] provides a way to limit the range of

possibilities by making use of already existing algorithms for

blind deconvolution in order to get a first estimate, and obtain

an uncertainty around this estimate so that the search can be

constrained. A short description is provided below.

First, a blind Lucy-Richardson (LR) algorithm [11] pro-

vides a first estimate of the PSF, and the resulting deconvolved

image is not used by the system. The output of the algorithm

is the convolution kernel, and the closest Gaussian is found by

minimizing the Root-Mean-Square (RMS) distance between

the Gaussian function and the values of the kernel. The vari-

ance of this Gaussian, σ2
e , becomes the PSF estimate.

Second, an uncertainty is computed based on a synthetic

texture, a horizontal line (1-pixel wide) of maximum intensity

(here 255) while the rest of the image has minimum intensity.

This texture provides a single sharp feature to illustrate the

effect of the PSF. A Gaussian and rotationally symmetric PSF

is chosen so that its convolution with the texture reduces the

line’s intensity value by half (at its original location), the rest

of the intensity being dispersed to its neighbours.

This criterion allows the standard deviation of the PSF

to be easily calculated. This can be expressed as (σf is the

standard deviation and Kf is a constant):

1∑

x=−1

1∑

y=−1

Gf (x, y) =

1∑

x=−1

1∑

y=−1

Kf e
−

(x2+y2)

2σ2
f = 1, (3)

255 (Gf (−1, 0) + Gf (0, 0) + Gf (1, 0)) =
255

2
. (4)

From Eqs. 3 and 4 it can be shown that σ2

f = 0.72. For

a kernel of size 5 × 5, the uncertainty can be shown to be

σ2

f = 0.64.

In this paper, the uncertainty obtained above determines

the range within which the GSS will be performed: r =
[σ2

e − σ2

f , σ2
e + σ2

f ]. If σ2

f > σ2
e , then a minimum value

of 0.1 is imposed. Once σ2
r is obtained, the standard belief

propagation algorithm of [4] can be applied as is. This pro-

cedure is denoted as the PSF-GSS/BP-MRF framework, and

can be easily adapted to other PSF models, such as a pillbox.

3. SIMILARITY MEASURES

To assess the quality of the super-resolved images, three dif-

ferent quality measures are used, representing different as-

pects of image quality. In all cases, quality is assumed to be

the level of similarity with the ground truth high-resolution

image. First, the Peak Signal to Noise Ratio (PSNR) is used to

measure the quality of the signal: PSNR = 20 log10

MAXI

RMSE
,

where MAXI is the maximum possible intensity (here 255)

and RMSE is the Root Mean Square Error.

Second, the Edge Stability Mean Square Error (ESMSE)

[12] is used to quantify the localization and scale of edges.

An edge detector at five different scales is applied to both the

ground truth and the super-resolved images. The edge sta-

bility map is obtained by finding, for each pixel, the longest

uninterrupted sequence of edge presence along scales. The

EMSE is the MSE between the maps of the ground truth and

super-resolved images. In this paper, the measure is trans-

posed into a PSNR for easier comparison with the other mea-

sures, and is referred to as the Edge Measure (EM).

Finally, a measure that has attracted considerable inter-

est recently is the Structural Similarity Measure (SSIM) [13],

consisting of comparisons of the luminance, the contrast and

the structure of both the distorted (Y) and the true (X) sig-

nals. The comparisons are performed in local windows lead-

ing to a SSIM map. The Mean SSIM (MSSIM) can then be

calculated for the entire image. The reader is invited to con-

sult [12, 13] for the formal definitions of the ESMSE and the

SSIM measures.

All results are expressed in terms of the improvement of

similarity (in percentage): SI = 100·Mrh−Mlh

Mlh
, where Mrh is

the value of the similarity measure between the super-resolved

and the high-resolution images, and Mlh is the value of the

measure between the low and the high-resolution images. A

result above zero indicates an improvement with respect to

the low-resolution image.

4. EXPERIMENTS AND RESULTS

The proposed framework was tested on images of various

types, and the quality of the super-resolved images is assessed
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Fig. 1. Details of images for the experiments. a, d, g are the original high-resolution images, b, e, h are the input low-resolution

images (reinterpolated using bilinear interpolation), and c, f i are the super-resolved images using the proposed method. Three

databases are used for the examples: a Fingerprint, a Car and a MRI database.

using the similarity measures described above. All ground

truth images were blurred using a 5 × 5 Gaussian PSF of

variance σ2
t and subsampled by a factor of 2 to obtain the

input low-resolution images. For each input image, a train-

ing database of high-resolution images of the same nature is

available. Examples of input and ground truth images, as well

as super-resolved images are shown in Fig. 12.

Results of the similarity measures are shown in Fig. 2a,c,e

with respect to a series of true parameters σ2
t . What can be

seen is that the similarity improvements vary greatly with the

image used and the type of measure. In general, however,

the MSSIM improvements are always higher than those of

the PSNR. The EM improvements show more variations, with

fairly low values for the Fingerprint database but high values

for the Car and MRI image. Also, the values for all measures

seem to have a peak around σ2
t = 3 and then reach a plateau

for larger variances.

The error on the refined variance with respect to the true

variance is shown in Fig. 2b,d,f for a blind deconvolution pro-

cess and for the algorithm presented here. In general, the re-

sults are as good or better than the blind LR algorithm. It can

be seen that the variance is fairly well estimated for values

around σ2
t = 3, however the error raises sharply for higher

values. This is due to the fact that the size of the blurring

kernel was kept small (5×5), thus the effect of increasing the

variance will be nil at some threshold.

For low values of σ2
t and for the Fingerprint and MRI

examples, the proposed method allowed in general a good

refinement of the PSF estimated by the blind deconvolution

algorithm. For the Car example, however, results compare

to the blind deconvolution estimates, thus indicating that the

type of image and the training database available will greatly

influence the results.

The same series of experiments were also performed us-

ing the method proposed in [9], referred to as the PSF-BP

method. For space reasons, only the most significant results

are reported. Comparisons for the PSF recovery procedure

are shown in Figs. 3 for the Fingerprint and Car examples,

and Fig. 4 show comparisons of the obtained similarity im-

2The images were provided from the Fingerprint Verification Competition

(http://bias.csr.unibo.it/fvc2000/), the McGill’s Artificial Perception Labora-

tory and the Montreal Neurological Institute (McGill University).

provements for the Fingerprint and the MRI examples. In

Fig. 3a (for the Fingerprint example), both the PSF-BP and

the PSF-GSS methods in general perform better than standard

blind deconvolution for low values of σ2
t . For the Car exam-

ple, shown in Fig. 3b, the PSF-GSS method gives in general

higher errors. For the image quality measures, results vary

strongly with the type of image used. For the MRI exam-

ple the PSF-GSS method gives much better results, while for

the Fingerprint image the PSF-GSS method gives a less pro-

nounced improvement.

5. CONCLUSIONS AND FUTURE WORK

A new PSF refinement procedure for blind super-resolution,

was presented, based on the Euclidean distance between im-

age patches from the input image and patches from degraded

versions of high-resolution training images. Modeling the

PSF as a rotationally symmetric Gaussian, the PSF-GSS pro-

cedure is able to refine an estimate of the variance, previously

obtained from a standard blind deconvolution algorithm. Fur-

thermore, a series of image similarity measures representing

different aspects of quality was used to quantify the effect

of this PSF refinement algorithm on a learning-based super-

resolution process. It was found that the PSF-GSS method

in general leads to higher image quality than another blind

super-resolution algorithm. Another important contribution

of this paper is comparison with a standard blind deconvolu-

tion algorithm for PSF recovery, which has generally not been

done in blind super-resolution studies (e.g. [8]).

Future work will include the use of other distance met-

rics for a PSF refinement process from examples, as well as

comparisons with other blind super-resolution methods.
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Fig. 2. Results using the PSF-GSS/BP-MRF method. a-c:

Similarity improvement vs true PSF variance, b-d: Error on

refined variance vs true PSF variance. The error on the refined

variance is here defined as e = σ2
r −σ2

t . The results in a,b are

for the Fingerprint image, those in c,d are for the Car image

and the images in e,f are for the MRI image.
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Fig. 3. Comparison of the PSF-GSS/BP-MRF and the PSF-

BP methods: Absolute error on the refined variance vs true

PSF variance for the Fingerprint (a) and the Car (b) databases.
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