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ABSTRACT 
 
An efficient automatic moving target detection and tracking 
system in airborne forward looking infrared (FLIR) imagery 
is presented in this paper. Due to camera ego-motion, these 
detection and tracking tasks are challenging problems. 
Besides, previously proposed techniques are not suitable for 
aerial images, as the predominant regions are non-textured. 
The proposed system efficiently estimates not only the 
camera motion but also the target motion, by means of an 
accurate motion vector field computation and robust motion 
parameters estimation technique. This information allows 
accurately to segment each target, and tracking them with 
ego-motion compensation. Verification of tracking 
restrictions helps detecting true targets while reducing very 
significantly the false alarm rate. Excellent results have 
been obtained over real FLIR sequences. 
 
Index Terms— motion segmentation, robust motion 
estimation, ego-motion compensation, trajectory 
restrictions, FLIR images. 
 

1. INTRODUCTION 
 
Automatic moving target detection and tracking in forward 
looking infrared (FLIR) imagery are challenging problems 
due to low signal-to-noise ratio, non-repeatability of target 
signatures, and illumination variation. These produce 
random variations of the image gray level values. Besides, 
in airborne applications, the sequence is affected by camera 
ego-motion, that makes detection and tracking processes 
extremely difficult. Therefore, accurate image stabilization 
strategies are required, which additionally will allow 
consistent trajectories computation. 

Nevertheless, ego-motion estimation for image 
stabilization is rarely considered in FLIR target detection 
and tracking research works, and most of them are focused 
on air-to-earth scenarios. Some works [1][2] incorporate 
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ego-motion compensation for image stabilization to 
compute target detection through image differencing. 
However, these segmentation techniques offer poor results 
because of the aforementioned drawbacks of FLIR images 
together with the reduced size of the targets. Others, [3][4], 
use ego-motion compensation for target tracking and not for 
target detection, and its computation is restricted only to 
those cases where tracking fails due to large camera 
displacements. Therefore, although tracking is achieved in 
these cases, there is a lack of temporal consistency in the 
computed target trajectories as most of them are affected by 
non-compensated ego-motion.  

Here, the objective is the accurate and efficient detection 
and tracking of aerial targets in FLIR sequences composed 
by large uniform sky regions and reduced cloud or earth 
regions. Therefore, ego-motion estimation is particularly 
difficult as no stable reference background can be found due 
to the lack of large textured background areas. In [5] aerial 
target scenarios are addressed, looking for low 
computational cost approaches. Nevertheless, that technique 
could be biased when predominant non-textured regions are 
present in the scene. 

In this paper a new target detection and tracking strategy 
is proposed, which detects small size targets in predominant 
uniformed sky sequences affected by camera ego-motion. A 
motion analysis, based on robust parameters estimation, 
allows to segment potential moving targets and tracking 
them without ego-motion distortion. Tracking restrictions to 
efficiently reduce the number of false alarms are applied.  

This paper is organized as follows: Section 2 presents an 
overview of the proposed strategy. Section 3 and 4 
introduce local motion estimation and motion analysis 
approaches, while Section 5 describes the tracking 
restrictions and their verification. Excellent experimental 
results obtained over real FLIR sequences and conclusions 
are presented in Section 6 and 7. 

 
2. SYSTEM OVERVIEW 

 
The system, shown in Figure 1, is composed by three 

processing modules: Local Motion Estimation, Motion 
Analysis and Tracking Restrictions Verification. 
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Figure 1: System block diagram. 

Consecutive sequence images,  and , are 
processed by the Local Motion Estimation module to 
estimate a robust motion vector field, RMVF, through a 
combined forward and backward efficient block-based 
motion estimation strategy restricted to edge-based regions. 
RMVF is analyzed to robustly estimate camera and target 
motion parameters, assuming an affine motion model. This 
information is used to segment potential moving targets and 
perform their tracking removing the ego-motion, . Over 
this tracking information, restrictions are applied to detect 
true targets, , and discard moving clutter in the 
Tracking Restriction Verification module. 
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3. LOCAL MOTION ESTIMATION 

 
A motion vector field is computed through a block-based 
forward-backward motion estimation strategy. Due to the 
aperture problem [6], which arises from non-textured 
regions, motion estimation is restricted to blocks centered 
on significant image edges.  
 
3.1. Edge image generation 
 
Edge detection is carried out by a Canny detector, which 
requires two thresholds to be fixed to discard those edges 
either non relevant or produced by the noise present in the 
image. Here, the noise distribution is characterized as 
Gaussian, and its variance is obtained from the histogram of 
the union of the vertical and horizontal gradient images, 
obtained through the derivative filter D=1/2[-1 0 1]. 
Therefore, upper and lower Canny thresholds are set 
to n5.2 and n5.1 , where n  is the histogram standard 
deviation. So, this strategy is automatically adapted to the 
level of noise present in the images. 

Each resulting binary image is morphologically dilated 
to allow a safety margin in the edge location, obtaining the 
binary image, n . E Figure 2 (a) shows an original FLIR 
image, and (b) the corresponding edge-based binary image.   

 
3.2. Forward-Backward Motion Estimation 
 
A robust motion vector field, RMVF, is generated by means 
of a backward and forward block-based motion estimation 
restricted to image regions determined by the one-valued 
pixels in  and . 1nE nE

(a) (b) 

Figure 2: (a) Original image , (b) dilated edge image  nI nE

 
Figure 3: Sparse motion vector field with detected errors. 

Forward motion estimation is computed through an 
adaptive search block matching technique, which generates 
a sparse motion vector field between  and . Block 
centers must belong to edge pixels and, to minimize 
overlapping, the minimum distance between two reference 
blocks is the block size. So, each block center (

1nI nI

br ) of  
must be one edge pixel of  and each block center (

1nI
1nE r ) 

of  must be one edge pixel of . For each considered 
block in , the motion vector is computed as: 

nI nE
1nI

rrNCCF
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rrrd b

b

mbm ,maxarg|)( 111  (1) 

where rrNCCF b,  is the Normalized Cross Correlation 
Function between the block of  centered in 1nI br  and 
another block of centered in nI r . r  belongs to the search 
area, , restricted to a circle of radius R centered in bS br .  

Next, the backward motion vector field between images 
and  is computed like the forward estimation, except 

that now the blocks of are centered in 
nI 1nI

nI 1mr (those pixels 
resulting from the forward motion estimation process as in 
(1)). As a result, motion vector is computed as:  

rrNCCF
Sr

rrrd m

b

mmm ,maxarg|)( 12122  (2) 

Finally, the coherency between forward and backward 
motion vector fields is verified by imposing that vectors 
belonging to RMVF must satisfy 21 dd , which removes 
low reliability motion vectors. Figure 3 presents the sparse 
RMVF (in white) corresponding to the image in Figure 2 (a), 
where removed erroneous motion vectors are shown in 
black.  

 
4. MOTION ANALYSIS 

 
RMVF is analyzed to accurately segment the different 
independent moving regions, IMR, whose motion is 
modeled through a restricted affine transformation, RAT. 
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This transformation is adequate, as the long distance 
between the camera and the moving objects allows to 
consider orthographic projection. 

The RAT parameters associated to the camera ego-
motion, RATcam, are accurately estimated through a robust 
estimation strategy, under the assumption that the motion 
vectors corresponding to the targets are outliers (their 
associated regions are a minority with respect to the regions 
associated to textured background in the considered 
scenarios). Next, outlier motion vectors are clustered 
according to a connectivity criterion of their associated 
blocks, and then, the same robust motion estimation strategy 
is applied to segment the potential targets.  

The tracking of each potential target is performed by 
compensating the camera ego-motion, RATcam, in each target 
motion, defined by its own . i

tarRAT
 
4.1. Ego-motion Estimation 
 
Camera ego-motion is modeled by a RAT that is defined by 
the matrix: 

100
cossin
sincos

y

x
tss
tss

RAT  

(3) 

where s is the scale,  is the angle of rotation and the pair 
(tx,ty) represents the translations along the axes. These are 
estimated through a robust parameter estimation technique 
presented in [7], based on RANSAC and Least Median 
Square algorithms. S subsets of RMVF, each one formed by 
k vectors, are randomly sampled, where S is computed as:   

k

P
S

11log

1log
 

(4) 

which can be interpreted as the minimum number of subsets 
that ensures with a probability P to find at least one subset 
without outliers.  is the maximum fraction of outliers 
contained in RMVF, and k is the dimension of the parameter 
space. 

 

Figure 4: motion vector segmentation. 

For each subset (  in RMVF) RAT parameters (RAT ) 
are estimated through Least Mean Square (LMS), and then, 
they are tested as a hypothesized fitting to the whole RMVF 
by calculating the median of the squared residual distance 

( ) of the motion vectors 2
,RATir RMVFd1 . The best 

fitting, , to RMVF is given by the expression:  TAR ˆ

2
,

RMVF-d1
  medianminargˆ

RATi
RAT

rTAR  
(5) 

 
However,  suffers a lack of accuracy since only a 

limited subset of RMVF has been used for the estimation. 
The Median Absolute Deviation algorithm 

TAR ˆ

[8] overcomes 
this drawback using the entire set of inliers vectors, , in 
the fitting process, which is determined by the expression: 

ind1

22
,11 5.2| RATi

in rdd  
(6) 

where is the inliers scale estimator given by:  

2
,RMVF-d1

  median514826.1 TARirkN
 

(7) 

where N is the total number of motion vectors in RMVF. 
Finally, the camera ego-motion RAT parameters, RATcam, are 
obtained by applying LMS over .  ind1
 
4.2. Target Motion Estimation 
 
Outlier motion vectors, inout dRMVFd 11 , are used to 
estimate the target RAT parameters, . are 
clustered according to the spatial connectivity of their 
corresponding blocks. Each cluster is a potential target 
whose  is estimated as described in the previous 
section for the RATcam estimation. Potential targets are 
segmented considering only the blocks associated to the 
inliers motion vectors used to compute each . 

i
tarRAT outd1

i
tarRAT

i
tarRAT

Considering i
nRT  and i

nRT 1 as the target positions at 
instants n and n-1, the evolution of the target positions (the 
target tracking) with the camera ego-motion compensated is 
computed as:  

i
n

i
tarcam

i
n RTRATRATRT 1

1  
(8) 

Figure 4 shows the resulting background (in grey) and 
target (in black) motion based segmentation corresponding 
to the RMVF presented in Figure 3. 
 

5. TRACKING RESTRICTION VERIFICATION 
 
False targets are discarded by imposing continuity and 
motion-size restrictions to each potential target tracking. 

Birds, which are potential moving targets, are removed 
by imposing a motion-size restriction that considers that 
target regions must overlap between consecutive images, 
while those regions corresponding to birds will never 
overlap if their size is similar to the targets. 

Continuity restriction discards potential targets that only 
appear in a limited number of consecutive frames, due to 
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random gray level variations, typical from FLIR images as 
described in the introduction. Therefore, the trajectory of 
each potential target is defined as:  
 

i
n

i
n

i
m

i
n RTRTRTJT ,1 ...  (9) 

 
where m is the instant in which the potential target is 
detected for the first time in the scene. A potential target is 
removed if thJT i

n , where  .  is the cardinal, and th is a 
scalar threshold. 

As a result of applying both restrictions, the false alarm 
rate is significantly reduced, and true targets, , are 
obtained. 

nDT

 
6. EXPERIMENTAL RESULTS 

 
The system has been tested with real FLIR sequences 

captured by interlaced 8-bit-gray-level infrared camera with 
resolution 512x512 pixels, mounted on a moving platform. 
The sequences are composed by non-textured sky regions 
(that predominate over cloud or earth ones), targets of 
different size and birds. In addition, they are affected by 
camera ego-motion and varying illumination. 

 Figure 5 shows three frames of two different sequences. 
The upper ones show urban clutter and a saturated target 
which is accurately segmented and tracked. The three lower 
ones have country clutter and a contrasted target which has 
been also correctly detected discarding some small regions 
corresponding to birds.  

The performance of the system has been measured by 
means of the Detection Rate and False Alarm Rate with and 
without the tracking restriction verification phase. An 
excellent Detection Rate of 99.4% is achieved, and the False 
Alarm Rate of the complete system is 0.8%. The efficiency 
of the proposed strategy is confirmed by the sharp reduction 
of the False Alarm Rate that is 11.3% before applying the 
tracking restriction verification. 

 
7. CONCLUSIONS 

 
An efficient automatic moving target detection and tracking 
system has been presented, which accurately detects moving 
targets in low-textured airborne FLIR images. Image motion 
is analyzed through a robust motion parameters estimation 
technique, which allows accurately to segment accurately 
potential moving targets and tracking them. Tracking 
restrictions, applied over the ego-compensated trajectories, 
are verified to identify true targets while the false alarms are 
drastically reduced. Exceptional results have been obtained 
confirming the efficiency and reliability of the proposed 
system. 

 

 

 
Figure 5: Target detection and tracking. 
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