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ABSTRACT
 

DNA microarrays are commonly used in the rapid analysis of gene 
expression in organisms.  Image analysis is used to measure the 
average intensity of circular image areas (spots), which correspond 
to the level of expression of the genes. A crucial aspect of image 
analysis is the estimation of the background noise. Currently, 
background subtraction algorithms are used to estimate the local 
background noise and subtract it from the signal.  In this paper we 
use Principal Component Analysis (PCA) to de-correlate the signal 
from the noise, by projecting each spot on the space of eigenvec-
tors, which we term eigenspots. PCA is well suited for such appli-
cation due to the structural nature of the images. To compare the 
proposed method with other background estimation methods we 
use the industry standard signal-to-noise metric xdev.

Index Terms—DNA microarray, biochip, eigenspaces, noise, 
segmentation. 

 
1. INTRODUCTION 

Microarrays (or biochips) allow for the simultaneous study of all 
the genes in an organism in a single experiment. This is made pos-
sible by spotting (placing) thousands of short DNA sequences on a 
surface. For microarrays manufactured using in situ synthesis 
(such as the ones studied in this work) each spot is fairly circular 
and the microarray image itself is very structured.  Microarray 
technology relies on hybridization between the genes (messenger 
RNA or cDNA) and the DNA probes spotted on the array. Two 
gene pools are used; a test one and a control one. The genes bind 
to the probes on the array and become immobilized. The gene 
sequences are labeled with fluorescent dyes Cy3 and Cy5 (control 
and test, respectively) [2]. Thus, the level of gene expression, cor-
responding to the amount of gene sequences immobilized on a 
specific spot on the array, is proportional to its intensity. 

The main objective from a biological standpoint is to deter-
mine the gene expression level in cells.   The process of acquiring 
an image involves laser scanning at two different wavelengths, 
each corresponding to the excitation level of each dye. This proc-
ess results in two 16-bit images labeled as red (Cy3) and green 
(Cy5).  The gene expression is deduced from the ratio of the spot 
intensity of the two channels.  Analysis of the microarray image 
involves finding the layout of the spots and superimposing a grid, 
the centers of the spots, segmenting the spots (determining back-
ground from foreground), spot intensity estimation, performing 
quality control to remove unreliable spots, performing dye nor-

malization and gathering statistics to determine differentially ex-
pressed genes [2].   

In this work we assume that the center of the spots are known 
and we focus on the spot intensity estimation.  Traditional spot 
intensity estimation techniques require the segmentation of each 
spot into foreground and background regions.  Subsequently an 
average measurement of the foreground intensity is taken, fol-
lowed by an estimate of the background noise, which is afterwards 
subtracted from the average foreground intensity.  This provides 
the background adjusted spot intensity. This process is repeated for 
each channel and the ratio of the two channels is used to assess the 
level of gene expression.

This paper presents a new method for estimating spot intensi-
ties without subtracting a local background estimate.  We use Prin-
cipal Component Analysis (PCA) to de-correlate the signal from 
the noise by projecting each spot on the orthonormal space of ei-
genvectors, which we term eigenspots.  PCA is well suited for this 
application due to the highly structural form of microarray images. 
We use images from Agilent Corporation for our experiments and 
Agilent’s spot quality metric to assess the performance of our 
method.

This paper is organized as follows.  In section 2 we describe 
how local background subtraction (LBS) algorithms work and the 
metric used to judge the quality of spots. In section 3 we present 
our work based on PCA. Section 4 presents our findings. Finally 
section 5 offers conclusions and future work. 

Fig. 1. A DNA microarray spot, (adopted from [1]). 
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2. SYSTEM MODEL 

In this section we present Agilent’s LBS algorithm, which is used 
to compare the proposed method [8]. Assuming known spot cen-
ters and based on parameters known from the manufacturer we can 
define a rectangular region of interest of NxN pixels, known in the 
industry as vignette. Figure 1 shows a vignette taken from an im-
age of an Agilent microarray.  There are four radii defined.  
spotRadius is the average radius of all spots in the microarray im-
age after all spots have been identified and segmented. The radii 
R1, R2 are defined as percentages of the spotRadius and are user 
selected parameters, while R3 is equal to 0.5N.

The region enclosed by radii R2 and R3 according to Agilent 
defines the local background region, .  An estimate of the inten-
sity of the spot is taken by averaging the signal from the circular 
area of radius R1 denoted by s, defined as s,r and s,g for the red 
and green channel respectively.  The signal from the area defined 
by the radii R1 and R2 is ignored due to a deficiency in the manu-
facturing of the array, which results in probes with smaller lengths 
at the perimeter of the spot compared to the length of the probes at 
the center. We will see later that our proposed method identifies 
those regions.

To estimate the local background according to Agilent’s 
method the mean of  is taken, defined as ,r and ,g for the red 
and  green channel, respectively.  Other LBS methods take the 
median of  or the median or average of predefined spots in the 
vignette as an estimate of the background noise.  Interested readers 
are referred to [10] for a review of such methods. 

Finally, the background adjusted spot intensity for each chan-
nel is defined as:

r = s,r - ,r                                       (1) 
g = s,g - ,g                                      (2) 

A necessary step in microarray analysis is dye normalization, 
which is necessary due to the different excitation levels of the 
dyes. For simplicity, we will ignore this step, since also it has no 
effect in the following analysis.   

We describe next the xdev metric which represents an indus-
try accepted metric for evaluating the quality of the estimate of the 
average intensity of the spot and it is used in this paper. Let Ns,r,
Ns,g denote the number of pixels in the s region of the red and 
green channel, respectively. Let N ,r, N ,g denote the total number 
of background pixels for a spot in the red and green channel re-
spectively. The standard deviation per channel, are defined as
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of the pixels in the s and  regions for the red (and green) channel. 
The log ratio ( lRatio ) of the dye normalized and background 
subtracted means of the Cookie signal is given by 

10 r glRatio Log .                              (5) 

lRatio is the term used to define the expression of genes as we 
will see in the results section. The standard error ( rlRatioErro ) in 
calculating lRatio is shown below using the standard error propa-
gation model [2],  

)()10(ln 2 BArlRatioErro ,                       (6) 
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,gr  is the covariance between the two channels. The term B is 

typically neglected since it approaches zero assuming there is no 
cross correlation between the background subtracted signals in the 
red and green Channels.

The quality metric xdev is defined as the signal to noise met-
ric used in this paper and is a function of the ratio of intensities and 
the error in estimating the ratio of intensities [1], [9]:  

rlRatioErro
lRatio

xdev .                                   (7) 

This parameter has been proposed by Agilent (the manufacturer of 
the arrays used in this experiment. A higher |xdev| implies greater 
confidence in the spot intensity ratio estimate. This confidence 
metric is analogous to the signal-to-noise metric for images. 

2. EIGENSPOT METHOD

Principal Component Analysis (PCA) is a statistical method used 
to map a dataset to a new coordinate system such that the variation 
of the data set is largest along the first principal component, sec-
ond largest along the second principal component, and so on [5]. 
The principal components are orthogonal to each other. To remove 
the noise from the image, we utilize only the Principal Compo-
nents that contain most of the energy in the signal.  

To analyze an image using PCA we scan (by rows or col-
umns) each vignette to convert into a vector of size N2 1 pixels.
The collection of column vectors from all the spots in the image 
form the observation dataset. If the image has L spots, the observa-
tion matrix x has dimensions 2N L  pixels, for each of the red 
and green channels. Alternatively both channels can be utilized in 
forming an N2 2L matrix x.

We obtain the covariance matrix of x is obtained as 
{( ) ( ) }T

x x xC E x u x u ,                          (8) 
where 

}{xEux .                                       (9) 
We arrange the eigenvectors (henceforth referred to as eigen-

spots) of the covariance matrix xC  in descending order based on 
the value of the variance of the corresponding eigenvalues.  We 
stack each eigenspot as a horizontal vector to form the matrix of 
eigenvectors V.  We can obtain the co-ordinates of the dataset x
in the new principal component space as  

( )xW V x u ,                                    (10) 
and the original dataset x by re-writing Eq. (10) as  

T
xx V W u ,                                    (11) 

since 1TV V  holds for orthogonal matrices.
We reduce the dimensionality of the dataset by keeping only 

the first K eigenvectors, thus forming the matrix KV .  The new 
dataset can then be written as 

T
k K xx V W u                                   (12) 

Each column of xk is transformed back to a vignette, in order to 
calculate |xdev|.  For our method we do not subtract the back-
ground signal (as in Eqs (1) and (2)) and therefore r = s,r, g = 

s,g.  Consequently, the 2nd term in Eqs. (3) and (4) is omitted from 
the standard deviations. |xdev| is calculated from Eq. (7), using the 
above means and standard deviations, and Eqs. (5) and (6). 
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3. RESULTS 

We used six microarray images for our experiments obtained an 
Agilent system.  We used xdev as a metric to compare the per-
formance of the eigenspot method to Agilent’s LBS method.  As 
mentioned in Sec. 2, there are three choices for deriving the eigen-
spots used in the PCA method. Method I results by finding the 
eigenspots for the red and green channels independently and thus 
transforming them independently.  Method S results by finding the 
eigenspots for one channel but transforming both channels using 
the same eigenspots set. Finally Method C results by performing 
PCA once on the dataset consisting of both the red and green 
channels. We should note here that we are training on the complete 
set of data since we are not interested in the classification proper-
ties of PCA, but on its de-correlation properties.

The results section is divided into two sub-sections. The first 
one discusses the performance of the PCA approach comparing all 
three eigenspot derivation methods to Agilent’s LBS method, 
while the second one discusses the effects of the proposed method 
to gene expression analysis.  All methods and metrics are imple-
mented and tested in Matlab. 

3.1 xdev Performance 

We tested our method on 19061 spots of a microarray image. Fig. 
2 shows the first 10 spots from the red channel of the image. The 
first three eigenspots obtained by PCA on the red channel are 
shown in Fig. 3, leftmost is the eigenspot with the highest energy. 
The energy in the first three eigenspots is 95.6%, 1.3%, and 1.11% 
respectively. After extensive experimentation with the parameter 
K, we decided to use K=3 for all the results presented here, since 
this value offered the best performance.  

We can see from the shape and values of the eigenspots the 
effect of the manufacturing deficiency. Specifically, the leftmost 
eigenspot is a disk with same values at the center but smaller val-
ues at the perimeter of the spot, while the other two eigenspots 
have zero values at the center and large and positive values at the 
perimeter. 

In Fig. 2, note that spots 2, 3, 7 and 10 have intensities close 
to zero, and are henceforth referred as ‘inactive spots’.  Figures 4 
and 5 show the corresponding |xdev| and lRatioError for the 10 
spots for all approaches. |xdev| for spots 6, 10 and 12 is not shown 
since their centers were not found, and were therefore excluded 

from our analysis. Only the first 10 spots are shown to show the 
relative performance of the methods.

For Method I, the average |xdev| for the 10 spots is 50.69 
whereas it is 22.01 for Agilent’s LBS. On average the |lRatio| of 
Method I deviates from Agilent’s |lRatio| by 0.03 for the same 
spots. Therefore, we can see that the increase in |xdev| of Method 
A is not due to the difference in |lRatio| but to the decrease in the 
lRatioError term of xdev, instead. 

Subsequently, for Method S, eigenspots were derived from 
the red channel and the red and green channels were projected and 
reconstructed based on the first three eigenvectors. The corre-
sponding average |xdev| is 47.62. Thus the average |xdev| dropped 
6% compared to Method I.

Using Method C the average |xdev| is 58.49, which is 15.3% 
higher than the average |xdev| obtained using Method I.

The |xdev| of spots 3 and 11, derived using Agilent’s LBS is 
larger than the corresponding |xdev| for Method S and C.  This is 
due to the fact that spots 3 and 11 are inactive spots (low mean 
intensity. However, these spots are not differentially expressed.  

From Fig. 5 we see that lRatioError of Method I is smaller 
than Agilent’s for all spots. The proposed method reduces the error 
in estimating the Log Ratio of intensities compared to LBS meth-
ods.  Furthermore, we can conclude that Method I is the best ap-

Fig. 2. First 10 Spots of the red channel of a microarray image.

Fig. 3. Eigenspots obtained using Method I on the red channel of a 
microarray image. 
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proach in deriving eigenspots and applying the PCA-based spot 
intensity estimation when compare to the other methods. 

3.2 Differential Expression 

We evaluate now the performance of the proposed method in terms 
of the differential expression of a gene. A spot is considered to 
represent a differentially expressed (DE) gene if 

|lRatio| T,                                   (17) 
where 1 T 3, is chosen by the user and depends on the nature of 
the experiment [7]. Recall from Eq. (5) lRatio<0 represents under-
expression, while lRatio>0 represents over-expression [10]. The 
following performance criteria are used to assess how the proposed 
method affects the analysis of gene expression:  
1. IN_AGI, IN_PCA: Total number of spots characterized as not 

DE using Agilent’s LBS (|lRatioA|<1) and Method I 
(|lRatioI|<1), respectively. 

2. OUT_AGI, OUT_PCA: Total number of spots characterized 
as DE using Agilent’s LBS (|lRatioA| 1) and Method I 
(|lRatioI| 1), respectively.  

3. IN_AGI_OUT_PCA: Spots classified as not DE by Agilent 
(IN_AGI) but as DE by Method I (|lRatioI| 1).

4. IN_PCA_OUT_AGI: Spots classified as not DE using Method 
I (IN_PCA) but as DE using Agilent’s method (|lRatioA| 1).
The table in Fig. 6 shows the results for six DNA images.  We 

observe (6th row) that there are a number of spots flagged as DE by 
Agilent but as not DE by Method I. Thus the proposed eigenspot 
method has the potential to reduce the review time and effort re-
quired by the experimenter by rejecting a spot based on its lRatio.
This is a critical element since it reduces the number of follow-up 
experiments needed on selected spots.

In addition, we see that for Images 1 and 2, there is a single 
spot, classified as not DE by Agilent but classified as DE by PCA 
(Fig. 6, row 5). Thus our method identified a spot as DE, which 
Agilent’s method missed.

Furthermore, we see that for all images the average |xdev|
(row 7) of the proposed method is greater than the one of Agilent’s 
(row 8). Finally, from inspecting the values of |xdev| for all the 
spots in the images, we observed that the proposed method has 
larger |xdev| compared to Agilent’s for more than 75% of spots.

4. CONCLUSION 

In this paper we showed that PCA and the proposed eigenspot 
method can be used successfully to de-correlate the spot intensity 
signal from the local background noise. It outperformed the local 
background subtraction method used by Agilent (a major provider 
of microarrays and image analysis software). As a comparison 
metric we used the industry accepted signal to noise metric |xdev|.
We tested our method on six microarray images and showed that 
the average |xdev| is greater for all images. We also showed that 
our method improves the classification of differential expression 
of genes from spot data, by reducing the error in the ratio of inten-
sities.

The proposed technique provides to the experimenter more 
freedom in deciding the significance of each spot. To that extend 
we are in collaboration with biologists to deploy and test our 
method.  We are in the process of using the eigenspots as tem-
plates for finding the centers of spots and for classifying spot qual-
ity. Thus far, our preliminary results show great promise in that 
direction.
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