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Abstract—An upper-limb stroke rehabilitation system is de-
veloped that assists patients in performing real world function-
ally relevant reaching tasks. The system provides de-weighting
of the arm via a simple spring support whilst functional elec-
trical stimulation is applied to the anterior deltoid and triceps
via surface electrodes, and to the wrist and hand extensors via
a 40 element surface electrode array. Iterative learning control
(ILC) is used to mediate the electrical stimulation, and updates
the stimulation signal applied to each muscle group based on
the error between the ideal and actual movement in the previ-
ous attempt. The control system applies the minimum amount
of stimulation required, maximising voluntary effort. Low-cost,
markerless motion tracking is provided via a Microsoft Kinect,
with hand and wrist data provided by an electrogoniometer or
data glove. The system is described and initial experimental
results are presented for a stroke patient starting treatment.

Keywords: Robotics; Electrical stimulation; Iterative
learning control.

I. INTRODUCTION

Stroke is the largest cause of adult disability in the
UK, affecting 110,000 people every year [1]. Less than
15% of patients that experience initial upper-limb paralysis
following stroke regain full function [2], which restricts their
ability to perform everyday reaching and grasping tasks.

Functional electrical stimulation (FES) can assist stroke
patients in moving their impaired limbs, and its use in re-
habilitation has been shown to increase upper-limb function
[3]. Benefits of FES have been shown to be greatest when
combined with maximal voluntary effort from the patient to
perform the movement [4]. Rushton [5] hypothesized that
the application of FES to assist movements that the patient
is attempting to perform with voluntary effort may lead to
Hebb-type relearning and greater long-term recovery. It is
hence important for rehabilitation systems to provide the
minimum amount of FES required to accurately assist the
movement, encouraging the patient’s maximum voluntary
effort.

To achieve precise movement, a technique called iterative
learning control (ILC) has been used to adjust the FES.

This is a control method originally developed for industrial
robots repeatedly performing a pre-defined movement. The
data collected throughout each repetition of the movement
is then used to update the control input signal for the next
execution with the objective of increasing the accuracy of
the movement. Recent work has successfully used ILC to
regulate the timing and intensity of FES applied to stroke
patient’s muscles whilst performing planar [6], [7] and 3D
[8], [9], [10] reaching tasks. These previous studies reported
significant improvements in both performance accuracy and
clinical outcome measures of movement for stroke patients
following clinical trials, demonstrating the potential of ILC
and FES during rehabilitation. The system developed in this
paper progresses the application of ILC and FES to real-
world tasks incorporating the hand and wrist, and reduces the
cost and equipment demands of the system, partly through
use of the Microsoft Kinect®. It thereby advances towards
a rehabilitation system that may be used in patients’ homes.

II. SYSTEM OVERVIEW

Previous studies combining ILC and FES for upper limb
rehabilitation have used planar light tracking tasks [6] or
virtual reality 3D object tracking [8], incorporating explicit
reference trajectories for the patient to follow. To directly
target activities of daily living, the current system assists
real-world tasks that require manipulation of objects using
the hand and arm. The optional addition of an electrode
array for finer control of hand and wrist motion is also
included. Support against gravity is provided for the patient’s
arm using a commercially available passive spring support
(SaeboMAS®, Saebo, Charlotte, USA). Tracking of the
patient’s arm and hand movements is achieved using a
Kinect® (Microsoft, Washington, USA) motion capture de-
vice and wrist electrogoniometer (Biometrics Ltd, Newport,
UK). An optional 5DT data glove (5DT Inc, California,
USA) is also used for collection of finger movement, where
required. Since no explicit reference trajectory is shown to
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the patient, the ILC scheme employs principles from motor
control to deliver the optimum FES assistance [11].

A. Motion Tracking

The recent release of the Kinect has revolutionised non-
invasive motion capture by providing a free software de-
velopment kit and pre-calibrated ‘out of the box’ hard-
ware, which has vastly reduced the associated hardware and
software cost [12]. The Kinect is a small (0.30 x 0.08 x
0.06 m), lightweight (1.4 kg) device incorporating a video
camera with an infra-red source and an infra-red sensor. The
infra-red sensor measures the reflection of infra-red light by
objects in front of the camera and calculates 3D position
data of those objects. Recent accuracy tests have indicated
that the device is capable of calculating position data with an
accuracy of around 1 cm [13]. The software supplied with
the Kinect uses pattern recognition to detect landmarks of
interest, such as limb segments and joint estimations.

In this system, the Kinect is used to capture joint centre
locations for the shoulder, elbow and wrist, for the calcu-
lation of shoulder and elbow joint angles. It is not possible
to use the Kinect for the calculation of wrist and hand joint
angles, due to accuracy limitations in hand tracking when
the device is at the distance required to produce a large
enough field of view for all the other segments. Therefore,
an electrogoniometer is included to collect wrist angle data
and an optional data glove can be used to capture individual
finger joint angle data.

B. FES Module

FES surface electrodes are positioned on the patient’s
anterior deltoid, triceps and wrist and hand extensor muscles,
with placement following clinical guidelines. A series of
5 V, 40 Hz pulses are produced by the control hardware
for each channel and amplified by a four-channel electrical
stimulator (Odstock Medical Limited, Salisbury, UK) to
generate a bi-phasic signal which achieves a smooth muscle
contraction [14]. For safety, the maximum pulsewidth that
can be applied to any channel is limited within the control
software and also by the stimulator. Prior to each session,
the amplification level for each channel is set by applying a
constant stimulation signal with pulsewidth 300µs from the
control hardware and slowly increasing the voltage until the
maximum comfortable level is reached. During subsequent
tests the pulsewidth is limited to 300µs.

Fig. 1. Electrode array with data glove and electrogoniometer used for
stimulating and tracking hand and wrist movement.

C. Electrode Array

The electrode array (Fatronik, Spain) comprises 5 x 8
elements which can each be routed to one of four FES
channels. This is achieved by custom made RS232 controlled
multiplexor hardware, comprising an Arduino board and
shift register array. For each required hand and wrist posture,
the optimal electrode sites and associated FES pulsewidths
are selected during initial tests through a search procedure
involving local linear model identification and gradient-
descent optimization [15]. The sites are then fixed during
subsequent experiments, with the pulsewidth amplitudes then
controlled by ILC. Note, due to the additional difficulty in
using the data glove, the electrode array can be replaced by
a pair of standard electrode pads depending on patient need.
The electrode array and data glove are shown in Figure 1.

D. System Software

The system software incorporates tracking of the patient’s
movement with the control schemes implemented to mediate
the FES in real-time. A custom made C++ application
is used to read the arm and hand positions from the
Kinect, electrogoniometer and data glove. Position data are
then transferred to the real-time control hardware (dSPACE
ds1103) which implements ILC schemes involving embed-
ded dynamic models of the arm. Outputs of the control
scheme comprise pulse-width modulated (PWM) signals for
each of the FES stimulator channels, together with RS232
serial data to control the electrode array. Digital inputs and
outputs are also employed to interface with the instrumented
task objects. A signal flow diagram is shown in Figure 2.

R
ea

l-
ti

m
e

In
te

rf
ac

e

R
ea

l-
ti

m
e 

P
ro

ce
ss

or
   

   
   

 (9
33

M
H

z)

 Kinect / Glove Interface
 (Visual C++)

  Direct
Hardware
  Access

P
W

M
A

D
C

Mathematical
   Software
Environment

    Data
Processing

G
ra

ph
ic

al
 U

se
r 

In
te

rf
ac

e
   

fo
r 

P
h

ys
io

th
er

ap
is

t

   FES Module

®Microsoft Kinect
Sensor

De-weighting
Spring Support

Wrist Goniometer

D
ig

it
al

 I
/O

Optional Electrode
Array & Data Glove

Instrumented 
Task Objects

   Multiplexor

Fig. 2. Signal flow diagram.

A graphical user interface (GUI) has been developed to
oversee the system inputs and outputs and is responsible
for customising control parameters, implementing the FES
control, collecting position outcome data, selecting the task
details to be performed and reviewing performance after
each session. During treatment, each patient attends 18 x
1 hour sessions during which the system assists them in
performing functional reaching and grasping tasks. Prior
to each session, a physiotherapist assists the patient into
the de-weighting support and places surface electrodes at
the required positions of the patient’s extensor muscles of
the shoulder, elbow, wrist and hand. The physiotherapist



uses a hand-held electrical stimulator when positioning the
electrodes so that they are placed at the optimal locations
to produce the desired movement. When incorporating the
electrode array, the optimum stimulation location for the
wrist and hand is automated by the software (see Section
II-C). The maximal FES levels are set for all electrode
channels so that they provide the required amount of stimu-
lation to achieve the required movement, whilst not causing
discomfort to the patient (see Section II-B). Tests are then
undertaken to identify parameters in the dynamic model of
the patient’s arm (see Section III).

At the beginning and end of each treatment session, four
‘button pushing’ tasks are performed without any FES being
applied (see Section II-E). The patient’s performance during
the unassisted ‘button pushing’ tasks is used to monitor
their arm function over time. Following the unassisted tasks,
the physiotherapist selects the tasks to be performed with
stimulation, based on the specific rehabilitation requirements
of each patient. Each task is typically performed 6 times with
20 s rest time between each trial. Immediately following
each trial and before the next attempt, the magnitude and
timing of the FES applied to each muscle group is updated
by the ILC scheme, based on the error contained during the
preceding attempt.

Sensors contained within the task objects are used to
detect if the patient has completed the task, at which point
the FES is terminated for all muscle groups so that the
patient can return their hand to the starting position. The
physiotherapist also has a safety button that they can press
to immediately stop the stimulation during a trial.

E. Reaching Tasks

Evolving from the previous systems that used planar light
tracking [6] or virtual reality 3D object tracking tasks [8],
this system uses functionally relevant real world tasks. The
tasks include: (1) switching a low light switch (shoulder
height), (2) switching a high light switch (head height), (3)
closing a drawer (shoulder height), (4) stabilising an object
on a table with the affected arm whilst manipulating the
object with the unaffected arm, (5) repositioning a drink-
sized object on a table, (6) pressing buttons positioned
on a table. All of the task endpoints are scaled for each
patient’s arm length and shoulder height so that the reference
joint angle signals result in the desired positioning of the
hand for the task. Figure 3 shows the workstation set up
for the functional tasks; the tasks were selected so that
they incorporate different aspects of reaching, grasping and
manipulating objects at varying elevation ranging from table
height to head height.

III. ARM MODEL AND CONTROL

A dynamic model of the arm-support system incorporates
a biomechanical description of the human arm and a repre-
sentation of the SaeboMAS spring support. Figure 4 shows
a block diagram of the control system and arm model.

Fig. 3. Functional task workstation (top) and optional electrode array and
hardware (bottom).

A. Human Arm Model

Position values for the shoulder, elbow and wrist joint
centres are calculated using the Kinect. To assist the FES
control scheme, a simplified model of the arm is used
for the calculation of joint angles. Figure 5 shows the
kinematic model of the human arm. Spasticity in stroke
patients often restricts flexion of the shoulder in the antero-
posterior plane, extension of the elbow and extension of
the wrist and fingers [16]. Therefore, the anterior deltoid,
triceps and wrist and hand extensor muscles were selected
for stimulation. It is assumed that stimulation applied to the
triceps produces movement about an axis perpendicular to
the upper and forearm segments and that stimulation applied
to the wrist and hand extensors produces movement about an
axes that is fixed with respect to the forearm. For the anterior
deltoid it is assumed that stimulation produces movement
about an axis that is fixed with respect to the shoulder and
determined by two rotation transformations. These comprise
rotations around the z-axis by β and around the x-axis by
γ. Identification of β and γ is described in Section III-C.

The dynamic model of the human arm is given in the
simplest case (excluding a full model of the hand) by

Bh(Φ)Φ̈ + Ch(Φ, Φ̇)Φ̇ + Fh(Φ, Φ̇) +Gh(Φ)

= g(u,Φ, Φ̇)− JT (Φ)hh

where Bh(·) and Ch(·) are 6-by-6 inertial and
Coriolis matrices respectively, Fh(·) and Gh(·)



Fig. 4. Block diagram of the ILC scheme.
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Fig. 5. Kinematic model of the (a) SaeboMAS support and (b) human
arm.

are friction and gravitational vectors and g(·)
comprises the moments produced through application
of FES, which are of the form g(u,Φ, Φ̇) =
[g1(φ1, φ̇1, u1), 0, 0, g4(φ4, φ̇4, u4), g5(φ5, φ̇5, u5), 0]T .
Here hh is a vector of externally applied force and torque
comprising components hs due to the spring support
and h due to interaction with objects; J(·) is the system
Jacobian. Moreover u1(t), u4(t) and u5(t) represent the
electrical stimulation applied to the anterior deltoid, triceps
and wrist and hand extensor muscles, respectively with
u = [u1, 0, 0, u4, u5, 0]T . From [17], each moment can be
assumed to be of the form

gi(φi, φ̇i, ui(t)) = hi(ui, t)×Fm,i(φi, φ̇i) i ∈ {1, 4, 5}

The term, hi(ui, t) is a Hammerstein structure incorporating
a static non-linearity, hIRC,i(ui), that represents the iso-
metric recruitment curve, cascaded with linear activation
dynamics, hLAD,i(t). The term Fm,i(φi, φ̇i) models the
multiplicative effect of the joint angle and joint angular
velocity on the active torque developed by the muscle.

The SaeboMAS support structure has the form

Bs(Θ)Θ̈ + Cs(Θ, Θ̇)Θ̇ + Fs(Θ, Θ̇) +Gs(Θ) +Ks(Θ)

= −JT
s (Θ)hs

where Bs(·) and Cs(·) are 5-by-5 inertial and Corelis
matrices, Θ = θ1...θ5, representing the angles of the spring
support. In addition, Js(·) is the system Jacobian, and Fs(·)
and Gs(·) are friction and gravitational vectors. The vector
Ks(·) comprises the moments produced through gravity
compensation provided by the spring, which takes the form

[k1(θ1), 0, 0, 0, 0]T . The rigid connection between structures
gives rise to bijective mapping between Φ and Θ so that the
combined model is given by

B(Φ)Φ̈ + C(Φ, Φ̇)Φ̇ + F (Φ, Φ̇) +G(Φ) +K(Φ)

= g(u,Φ, Φ̇)− JT (Φ)h (1)

This model of the arm is used by the FES control system
to produce an input signal that results in accurate completion
of the tasks. During trials incorporating FES, the controller
assists tracking about φ1, φ4 and φ5 alone, and it is assumed
that the patient has sufficient control over the remaining axes
to adequately perform the task.

B. Hand Model

Due to the complexity of identifying parameters in a full
dynamic model of the hand and wrist, the array element
identification procedure uses stimulation and angular output
data from the glove to construct a linear model linking these
variables. These are then integrated with the simpler model
described in (1). See [15] for full details.

C. Model Identification

The FES control schemes utilise a dynamic model of the
combined human arm and mechanical support, so that stim-
ulation results in accurate tracking of the reference profiles
calculated for each task. The dynamic model requires the
two parameters, β and γ, which define the anterior deltoid
axis. These parameters are determined by applying a ramped
10 s FES signal to the anterior deltoid and recording the
associated movement of the patient’s elbow. It is assumed
that the spring support cancels the effect of gravity so that
the stimulation only produces movement about the anterior
deltoid axis. A plane is fitted to the elbow positions that
were collected whilst the stimulation was applied, which is
then used to determine β and γ.

D. FES Control Strategy

An advanced control system utilising constrained point-
to-point optimisation has been developed and experimentally
verified [11]. This novel approach to controlling movement
embeds results from human motor control and poses each
task as a constrained optimisation problem, such as moving
from one point to another with constraints applied on the
joint velocity and acceleration to ensure a smooth movement.
In the ILC framework these problems are solved iteratively
using joint data from each attempt to update the control
input [18], [19], [20]. This improves on using predefined



references for each task since (1) the task is tailored to each
patient using their underlying arm dynamics, and (2) new
tasks can be added without requiring predefined references
to have been collected. A limitation of implementing this
technique is the requirement of a full dynamic model,
which entails a lengthy experimental procedure. Therefore,
to minimise cost and maximise usability of the system, a
simpler approach termed phase-lead ILC is currently used
in this system, based on tracking joint references extracted
from predetermined movement data.

The control system shown in Figure 4 is used to assist
tracking of reference signals that are extracted for the
shoulder, elbow and wrist joints. Control is implemented
for the pulse width inputs u1(t), u4(t) and u5(t) in the
input vector u(t). The outputs controlled by the system are
the elements φ1(t), φ4(t) and φ5(t) of vector Φ(t), which
track the corresponding elements φ∗1(t), φ∗4(t) and φ∗5(t) of
Φ∗(t) containing the joint angle reference signals for each
task. Joint angles not controlled by the system can either be
assumed fixed and removed, or treated as a disturbance.

The reach and grasp tasks that are incorporated in the
system consist of repeated movements for the patient’s af-
fected arm, with a rest period in between during which their
arm is returned to a common starting position. The repetitive
performance of finite duration tasks used in this system allow
ILC to be utilised to control the FES signals for each muscle
group. Each ILC trial starts from a fixed initial hand position
and the performance error from each trial is used to update
the control parameters in an attempt to increase accuracy
of the subsequent performance. In the current system, a
proportional-integral-derivative (PID) controller is typically
utilised in parallel with the ILC update, shown in Figure
4. Using this control structure, voluntary movement by the
patient can be treated as iteration-invariant disturbance and
can be compensated for [21]. A robust ILC scheme can deal
with dynamic changes and model inaccuracy due to fatigue,
spasticity and other physiological effects [6]. The phase-lead
ILC algorithm has the form

vk+1(t) = vk(t) + Lek(t+ τ) (2)

where L is a scalar learning gain, τ is the phase-lead
parameter and vk+1 is added to the feedback control output
to produce stimulation update uk+1. The joint error ek is
calculated from

ek(t) = Φ∗(t)− Φk(t)

where Φ∗ is the reference trajectory. Since only three joint
angles (φ1, φ4 and φ5) are controlled, L is multiplied by the
matrix {1, 0, 0, 1, 1, 0}. The term τ is typically chosen as the
time to maximum impulse response and can be determined
experimentally using a step or ramp response [22].

Since (2) requires a reference signal, unimpaired trials
have been collected for the functional tasks. Reference
signals were collected for the three controlled joint angles
and tasks were scaled to the size and reach of each patient.
Variation in the joint angles φ2 and φ3 is allowed by the
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Fig. 6. Example data from far button task. Left: Patient performance
for shoulder, elbow and wrist joint (reference angles = solid, patient
performance = dashed); Right: Stimulation applied to each muscle group.

system since only φ1, φ4 and φ5 are controlled. Tasks
were included in the system that are functionally relevant to
daily reach and grasp tasks and offer a range of movement
difficulties in 3D space. The tasks that are comprise each
rehabilitation session are selected by the physiotherapist,
based on the individual requirements of the patient.

IV. EXPERIMENTAL RESULTS

Ethical approval was obtained from the University’s ethics
committee. Clinical trials are currently underway and initial
results are available from the first three patients. Data were
collected at 100 Hz for the wrist electrogoniometer and
data glove, position data collected using the Kinect were
limited to a lower sampling frequency (typically 33 Hz),
and interpolated to 100 Hz. Control signals for the FES were
sampled at 40 Hz, as required for the FES.

The patients performed the ‘button pushing’ and ‘high
light switch’ tasks without any FES at the start of each
session. Following the unassisted tests, patients performed a
selection of the tasks with FES assistance, mediated by the
ILC algorithms. Maximum voluntary effort was encouraged
during the FES assisted trials. Figure 6 shows the FES
applied to each muscle group during a typical trial of the far
button pushing task and the resulting joint angle changes.

Figure 7 shows a patient’s joint angles at each joint
during unassisted and FES assisted trials at the far button
pushing task. Improvements were seen in joint angles for
all three joints with mean tracking accuracy improving by
54%, 59% and 66% for the shoulder, elbow and wrist,
respectively. Furthermore, the patient was not able to suc-
cessfully press the button during the unassisted trial, but was
successful when the controlled FES was applied. The results
demonstrate the success of the control system for improving
movement accuracy during reaching and grasping tasks.
Initial results from three participants that have completed
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18 treatment sessions are encouraging, with all participants
showing improvements in joint angle performance during
unassisted tasks. Mean joint angle error across the three
joints during unassisted performance reduced by between
35 and 51% over the sessions.

V. CONCLUSION

An upper-limb stroke rehabilitation system has been de-
veloped utilising ILC to regulate FES applied to extensors of
the shoulder, elbow, wrist and hand joints during every-day
functional tasks. The system employs the Kinect as a low
cost non-contact method of collecting real-time kinematic
data and provides assistance against gravity using a spring
support. The system incorporates a range of functional tasks
that challenge different aspects of reaching and grasping.
The use of ILC to update the FES applied during trials
encourages maximum effort from the patient during the
movement, which along with the trial repetitions can assist
with Hebbian learning. Initial results from current clinical
trials indicate the success of the system for increasing pa-
tients’ movement and controlling the FES during functional
tasks incorporating real world reach and grasp activities.
Future work on this project will focus on minimising the
system and developing the software so that it may be used
in patients’ homes without the need for a therapist.
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