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Abstract—A novel adaptive Unscented Kalman Filter (UKF) 

based on dual estimation structure is proposed. The filter is 
composed of two parallel master-slave UKFs, while the master 
one estimates the states and the slave one estimates the diagonal 
elements of the noise covariance matrix for the master UKF. By 
estimating the noise covariance online, the proposed method is 
able to compensate the errors resulting from the change of the 
noise statistics. Such a mechanism improves the adaptive ability 
of the UKF and enlarges its application scope. Simulations 
conducted on the dynamics of an omni-directional mobile robot 
indicate that the performance of the adaptive UKF is superior 
to the standard one in terms of fast convergence and estimation 
accuracy.  

I. INTRODUCTION 
s an extension of the traditional automatic control, 
autonomous control makes a mobile robot perform well 
under changing and uncertain environment with 

reduced human intervention for extended period of time. Its 
potential application includes satellite clusters, deep space 
exploration, air traffic control, and battlefield management, 
etc [1]. Online modeling is a key technology for autonomous 
controller to maintain stability and high performance in 
uncertain environment and in the presence of failures or 
damages. 

Neural Networks (NN) and NN-based self learning have 
been proposed as one of the most effective approaches for 
the active modeling of unmanned vehicles in 1990s [2]. 
However the problems involved in NN, such as training data 
selection, online convergence, robustness, reliability and 
real-time implementation, limit its application in real 
systems. In recent years, the encouraging achievement in 
stochastic estimation makes it becoming an important 
direction for online modeling and model-reference control 
[3]. Among stochastic estimation methods, the most popular 
one for nonlinear system is the Extended Kalman Filter 
(EKF) [4]. Although widely used, EKF suffers from the 
deficiencies including the requirement of sufficient 
differentiability dynamics and its susceptibility to bias and 
divergence during estimation. Julier et al proposed Unscented 
Kalman Filter (UKF) as a derivative-free alternative to EKF 
[5]. Compared with EKF, UKF does not need to calculate 
the Jacobian or Hessians and can achieve higher accuracy 
than EKF at an equal computational complexity of O(L3) [6]. 

However, the performance of UKF closely depends on the 
prior knowledge about the statistics of the measure-ments 
and the states to be estimated. The UKF can only achieve 

good estimations under the assumption that such prior 
knowledge meets the real situation well [7], while an 
inaccurate assumption will lead to poor performance or even 
divergence of the filter. But for real implementation, it is 
difficult to obtain such an accurate statistics a priori because 
it is influenced by the dynamics and working environment of 
a mobile vehicle, both of which are time-varying and 
uncertain.   

One of the efficient ways to overcome the above 
mentioned weakness is to use an adaptive algorithm. There 
have been many investigations in the area of adaptive filter. 
Hu et al [8] proposed the limiting memory of KF, which 
could adaptively adjust the forgetting factors according to an 
optimal condition. Maybeck [9] used a maximum-likelihood 
estimator in designing an adaptive KF that could estimate 
the covariance matrix of the error statistics. Lee [10] 
modified Maybeck’s method by introducing a window scale 
factor, and integrating it into UKF. Loebis et al [11] used 
fuzzy logic techniques to update the sensor noise covariance. 
But in practice it is difficult to determine the increment 
values of the covariance matrix at each time instant.  

In this paper we introduced an adaptive filter composed of 
two parallel UKFs. The master UKF estimates the system 
states while the slave one estimates the diagonal elements of 
the noise covariance matrix for the master UKF. By 
estimating the noise covariance, the proposed method is able 
to compensate the estimation errors resulting from the 
insufficient knowledge of the noise statistics. Simulations 
are conducted on the dynamics of an omni-directional 
mobile robot to verify the proposed scheme, and the results 
demonstrate that the performance of the adaptive UKF is 
superior to that of the standard one in terms of fast 
convergence and estimation accuracy.  

II. THE ADAPTIVE UKF STRUCTURE 
As shown in Fig.1, the proposed adaptive scheme is 

composed of two parallel UKFs. At every time-step, the 
master UKF estimates the system states using the active 
noise covariance calculated by the slave UKF, while the 
slave UKF estimates the noise covariance using the 
innovation generated by the master UKF. The master UKF 
can also work independently without the slave one. Thus, the 
dual-UKF structure is reduced to a standard UKF with fix 
noise covariance. And the setting of the master UKF does 
not need any updates while activating/deactivating the slave 
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one, which indicates that the slave UKF can be shut down to 
reduce the computational burden when the system statistics 
do not change a lot. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.  The Adaptive UKF Structure 
 

III. THE MASTER UKF 
In the proposed scheme, the setting of the master UKF is 

the same as that of a standard one.  
Consider a general discrete-time nonlinear system: 
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where  is the state vector,  is the input 

vector, is the output vector at time k. w

n
k Rx ∈ r

k Ru ∈
m

k Ry ∈ k and vk are, 
respectively, the disturbance and sensor noise vector, which 
are assumed to Gaussian white noise with zero mean.  

The master UKF can be expressed as: 
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Sigma Points Calculation and Time Update  
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Measurement Update 
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The variables in Equation (2~5) are defined as followings: 
{wi} is a set of scalar weights, α is a constant determining 
the spread of the sigma points around  and is usually set as x̂

141 ≤≤− αe . The constant β is used to incorporate part of 
the prior knowledge of the statistics of x, while β=2 is 
optimal for Gaussian distributions. Qx and Rx are the 
disturbance and sensor noise covariance respectively. The 
diagonal elements of Qx and Rx will be estimated by the 
slave UKF. 

IV. THE SLAVE UKF 
In real application, the difference between the priori 

knowledge and the true state statistics is the major factor that 
degrades the filter’s performance. Therefore, selecting 
appropriate covariance matrices, i.e., Q and R in Equation (4) 
and (5), is most important to maintain the performance and 
stability of the UKF. In this paper, we propose using a slave 
UKF to estimate the covariance online. Under the 
assumption that the process and measurement noises are 
Gaussian white, we can conclude that the relative covariance 
Q and R are diagonal matrices. Then the estimation of the 
noise covariance can be simplified as the estimation of the 
diagonal elements. 

Supposed that the diagonal elements of the noise 
covariance matrix are denoted by θ and . If the 
dynamics of θ is known, the state equation of the slave UKF 
is: 

lℜ∈θ

kkk wf θθθ += − )( 1                                                      (6) 
If the dynamics of θ is unknown, it can be modelled as a 

non-correlated random drift vector: 
kkk wθθθ += −1                                                             (7) 

where wθk is the Gaussian white noise with zero mean. The 
innovation covariance generated by the master UKF is taken 
as the observation signal for the slave UKF and then 
according to equation (5) the observation model can be 
described as: 
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The measurement of  received by the slave UKF is kŜ

{ T
kkk vvdiagS = }                                                           (9) 

where the vk is innovation and can be written as: 
1|ˆ
−−= kkkk yyv                                                             (10) 

and yk and  are, respectively, the real measurements in 
(1) and the relative estimations. 

1|ˆ
−kky

As discussed above, a recursive algorithm of the slave 
UKF can be formulated as: 
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Sigma Points Calculation and Time Update  
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Measurement Update 

( )( )
( )( )

( )⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

−=−+=

=

−−=

+−−=

−−−

−

−−−−
=

−−−−
=

∑

∑

T
SSkkkkkk

SSS

T

kkkkikkkki

n

i

c
iS

T

kkkkikkkki

n

i

c
iSS

kkkkkkkk

kkkkk

kk

kk

KPKPPSSK

PPK

SwP

RSSwP

θθθθθ

θθ

θθ

θ
θ

θθ

ςθϑ

ςς

1|
,ˆˆˆ

ˆˆ

ˆˆ

1|1|

1

1|1|,1|1|,

2

0

1|1|,1|1|,

2

0

                (13) 

where Qθ and Rθ are the process and measurement 
covariance respectively. The values of the weights  
can be calculated by Equation (4). 

c
i

m
i ww θθ ,

V.  SIMULATIONS 
The simulations are carried out with respect to the 

dynamics of the omni-directional mobile robot developed in 
SIA. (see Fig. 2). 

 
Fig. 2.  3-DOF omni-directional mobile robot 

A. Dynamics and UKF Setting 
The dynamic model of the mobile robot is [13]: 
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where xw, yw, φw represent the displacement in x and y 
direction and rotation respectively, u1, u2, u3 are actuated 
torques on each joint. Other parameters of (14), (15) and 
their initial values in the simulations are listed in Table І. 

TABLE І : ROBOT PARAMETERS 

Symbol Physical Meaning Value in 
Simulation 

c friction coefficient 0.0009 kgm2/s

Iw
Inertia on motor 

axis 0.0036 kgm2

M mass 120 kg 

Iv inertia 45 kgm2

r wheel radius 0.06m 

L centroid – wheel 
distance 0.273 m 

n motor gear ratio 15 

 
The state and measurement vector of the master UKF are 

selected as:  
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And the states can be modelled as a non-
correlated random drift vector as (7). The observation model 
of the slave UKF can be described as (8) with the 
measurement of (9). 
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The parameters of the slave UKF are set to: 

B. Estimation with Incorrect Process Noise Covariance 
The performance of the adaptive UKF with incorrect 

process noise covariance is tested in this section.  
In this simulation, we assume that the true process noise 

covariance is 
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Fig.3-a) demonstrates the velocity estimation errors in X-, 
Y-, and Ф-direction by standard UKF and Fig.3-b) are those 
by the adaptive UKF. We can see that, with the incorrect 
priori knowledge of the process covariance, the standard 
UKF almost fails to estimate the true value from the noise-
corrupted measurement. On the other hand, the adaptive 
UKF successfully reduces the noises to about one third of 
those by standard UKF.  

and the observations are corrupted by zero mean additive 
white noise with covariance .  { 888 10,10,10 −−−= diagRx
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noise covariance is  
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In the slave UKF, the states to be estimated are taken as 
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Fig. 3 State Estimation Errors with the Incorrect Process Noise Covariance 
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C. Estimation with Incorrect Measurement Noise Covariance 
The performance of the adaptive UKF with incorrect 

measurement noise covariance is tested in this section.  
In the simulation, the measurement noise covariance is set 

as , and process noise covariance is 

.  
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T }
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In the master UKF, the priori measurement noise 
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The simulation results are shown in Fig. 4. Similar to 
Fig.3, we can see that by online estimating the measurement 
noise covariance the adaptive UKF successfully reject the 
influence caused by the incorrect priori covariance of 
measurement noise and achieve better estimations. 
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Fig. 4 Velocity Estimation Errors with the Incorrect Measurement Noise Covariance 

D. Estimation with Changing Process Noise Covariance 
The proposed adaptive filter is tested by the situation with 

changing process noise covariance. Such situation might 
occur while the vehicle system suffering fault or damage. 
We assume that there occurs a abrupt change with the 
process noise covariance at t=10s, i.e.,  
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The measurement noise covariance is assumed as: 
{ }888 10,10,10 −−−= diagRx

T  
The priori knowledge of the master UKF is designed as: 
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The other settings of the master and slave UKF are the 
same as those in Section V-B). Fig.5 shows the simulation 
results. We can see that, by the standard UKF, the 
estimations occur significant changes at the time while the 
priori covariance setting of UKF fails to meet the true 
values. By the adaptive UKF, on the other hand, the 
estimations remain same as before even though the process 
noise covariance has changed.   
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a) Standard UKF 

 
b) Adaptive UKF 

Fig.5 Velocity Estimation Errors with the Changing Process Noise Covariance 
 

VI. CONCLUSION 

In this paper, a novel adaptive filter based on two-UKF 
structure is proposed for the state estimation of nonlinear 
systems. An additional UKF, called slave UKF, is integrated 
into a standard UKF, named master UKF, to actively 
estimate the noise statistics. The estimated statistics are 
further used by the master UKF in order to adaptively 
compensate the influence caused by inaccurate priori 
knowledge and changing statistics of system noise. The 
proposed algorithm is presented and analyzed in details, and 
extensive simulations are carried out to perform state 
estimation of an omni-directional mobile robot and to make 
comparisons between the standard UKF and the proposed 
adaptive filter. It has been demonstrated that the proposed 
method successfully reduces the dependency of the 
estimation performance on the accurate knowledge of 
system noise statistics. 
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