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Abstract — This paper presents a synchronous control 
approach to swarms of mobile robots in switching between 
formations. According to the desired formation, a 
synchronization control goal is derived, based on which the 
position synchronization error is defined as differential position 
errors between very pair of two neighboring robots. A 
decentralized trajectory tracking controller is then developed 
with feedback of both position and synchronization errors, 
formed with a combination of feedforward and feedback 
controls. It is proven that this tracking controller can 
asymptotically converge both position and synchronization 
errors to zero. Simulations are performed on a group of twenty 
fully-actuated mobile robots in a switching task between 
different ellipse curves. The simulation results demonstrate the 
effectiveness of the proposed synchronous control design for the 
formation control. 
Keywords — formation, mobile robots, synchronization. 

I. INTRODUCTION 
Study on coordination of multiple mobile robots has 

received increasing attentions in recent years. In this paper, 
we discuss the fundamental issues underlying trajectory 
controls of swam of robots while maintaining desired 
formations that may be time-varying. 

There are three conventional approaches to coordination of 
multiple mobile robots reported in the literature: 
behavior-based method [1-5]; virtual structure techniques 
[6-9]; and leader-following strategy [10-14]. In 
behavior-based control, several desired behaviors are 
prescribed for each agent, and the final control is derived 
from a weighting of the relative importance of each behavior. 
The advantage of this strategy is that the group dynamics 
contain formation feedback by coupling the weightings of the 
actions. The disadvantage is that it is difficult to describe the 
dynamics of the group and to guarantee the stability of the 
whole system [11]. In the virtual structure approach, the 
entire formation is treated as a single entity. Desired motion 
is assigned to the virtual structure which traces out 
trajectories for each member of the formation to follow. The 
advantage is that the method is easy to prescribe formation 

strategy and has stability guarantees for the robots. The 

disadvantage is that the controller is not in decentralized 
architecture and may encounter difficulty in some 
applications. In the leader-following strategy, some robots 
are designed as leaders, while others are designed as 
followers. The advantage of this strategy is that it is easy to 
control multiple robots in a desired formation using only two 
controllers and it is suitable for describing the formation of 
robots. The disadvantage lies in the difficulty to consider the 
ability gap of a robot [11]. 

In this paper, we propose to use a synchronization control 
strategy to address multirobot coordination, utilizing the 
concept of cross-coupled approach [15]. The basic idea is to 
let a team of mobile robots track desired trajectories while 
using cross-coupled controls to synchronize motions 
amongst the robots so that a certain kinematics relationship 
can be maintained for a desired formation. The 
cross-coupling technology [16] provides advantages and 
opportunities to design such a synchronized controller. Over 
the past decade, the cross-coupling concept has been widely 
used in multi-axis motions and other applications such as 
reducing contour error of CNC machines [17-20]. Recently, 
the cross-coupling concept was incorporated into adaptive 
control architecture to solve position synchronization of 
multiple axes [21]. The cross-coupling technology has been 
used in robotics, such as controls of mobile robots [22] and 
robot manipulators [23]. The solutions for contour tracking 
problem can be found in [24-25]. To avoid usage of modeling, 
a model free variable-gain cross-coupling controller was 
introduced for a general class of contours [26]. The effort to 
examine the stability and robustness of the cross-coupled 
control system was reported in [27]. Applications of the 
synchronization approach to addressing formation control 
problem have not been reported yet in the literature.  

The advantages of using the synchronization control idea 
for the formation control are threefold. First, the 
synchronization control goal is determined according to the 
desired formation, and then divided into a number of 
sub-goals for each individual robot without discrimination. 
By this way, the formation strategy can be well prescribed 
and the ability of each robot is not limited. Second, a 
synchronization controller that guarantees asymptotic 
stability of both position tracking and synchronization errors 
can be designed in a decentralized architecture [21]. Third, 
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the controller can be greatly simplified by synchronizing the 
motion of each robot with its two neighbors only [23,2]. In 
other words, each robot control only requires the information 
of two nearby robots but not all other ones. 

This paper has the following two contributions. 
First, we successfully transform the two simultaneous 

actions of trajectory tracking and formation to be a motion 
synchronization task. A synchronization equation is 
determined according to the desired formation, based on 
which a synchronization control goal can be derived. In a 
similar manner to [21], we drive each robot to approach its 
target position while synchronizing its motion with its two 
neighbors. To evaluate the synchronization control effect for 
the formation, the concept of the synchronization error is 
introduced, which is defined for each robot as the 
combination of the position errors of two nearby robots with 
coupling parameters. 

Second, we develop a decentralized cross-coupled 
controller to stabilize multi-robot motions while 
synchronizing positions of the robots for the desired 
formation. After definition of a coupled position error by 
combining the position error and the integration of the 
synchronization errors, a simple tracking controller is 
constructed with feedforward and feedback controls, with 
information request of two neighboring robots only. It is 
proven that the proposed controller can guarantee asymptotic 
convergence to zero of both position and synchronization 
errors. Simulations are performed on swam of robots in 
switching between different ellipse curves, to demonstrate 
the effectiveness of the proposed approach. 

The proposed synchronization control approach is more 
suitable to the tasks of maintenance of formation shape when 
group robots move as a whole, and switching between 
formations. 

II.   FORMATION VIA SYNCHRONIZATION 
Consider the control problem of guiding and positioning a 

group of n planar and fully actuated robots along the 
boundary (curve) of a two-dimensional compact set. The 
dynamics of the robot i is given by: 

ii uq =   )~1( ni =                             (1) 

where [ ]Tiii yxq ,=  is a 12×  vector containing coordinates 
in x-y plane, and iu   denotes the control input of the robot i. 
Introduce a time-varying desired shape, )q(S , where 

[ ]TT
n

T qq1q = denotes the configuration of the swam of 
robots. The boundary of )q(S  is parameterized by a two 
dimensional planar curve, 0)q(S =∂ . Consider a task of 
switching between different formations )q(S . Assume that 

each robot is assigned by a target positions d
iq , and all target 

positions are located in the curve 0)q(S d =∂ . The goal is to 
determine the appropriate control inputs for dynamic (1) such 

that the n robots converge to these target positions while 
maintaining the formation shape )q(S . 

Define the position error of each robot as i
d
ii qqe −= . 

The goal of the robot position control is to drive 0→ie . 
Meanwhile, the robots need to achieve the goal of the 
formation control, namely 0)(S , =∂∃ ii qq . This formation 
control problem can be solved by using the synchronization 
control concept. The basic idea is to regulate motions of the 
robots when they approach the target positions d

iq , so that all 
robots maintain in the required boundary curve 0)q(S =∂ .  

Define )( 1 nqqf  as a function of synchronization that 
all robots are required to satisfy simultaneously. This 
function is determined based on the formation control goal 
subject to the constraint 0)q(S =∂ . It actually represents a 
new task-dependent requirement in kinematics. An example 
is given below to show how such a synchronization function 
is derived from 0)q(S =∂ . 

Example: Consider that n robots are required to maintain 
in an ellipse curve during the motion. The coordinate iq of 
robot i is subject to the following equation: 
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where a and b denote the longest and the shortest radices of 

the ellipse, respectively, 
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arctanα  denotes the angle of the robot location on 

the ellipse. Assume that the robots are not placed in the 
longest or the shortest axis of the ellipse so that the inverse of 

iA  exists. For the desired formation, all robots need to 
satisfy the following synchronization function 
simultaneously: 
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From the above example, it is seen that the 
synchronization function can be generally represented in the 
form: 

nnn qcqcqcqqf === 22111 :)(                (3) 
where ic  denotes the coupling coefficient of the robot i and 
is assumed to be nonzero. (That ic  equals zero means the 
robot has no formation requirement and thus needs not the 
formation control.) Note that  ic  is either constant or 
time-varying. Since eq. (3) holds at all desired coordinates 

d
iq , we have 

d
nn

ddd
n

d qcqcqcqqf === 22111 :)( .             (4) 
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Then, the following synchronization goal can be derived by 
combining (3) and (4): 

nnececec === 2211                           (5) 
Eq. (5) actually represents the formation control goal 

implicitly. Further, the synchronization goal (4) can be 
divided into n sub-goals such as 11 ++= iiii ecec , with a 
boundary condition that when i=n, i+1=1. 

We then introduce the concept of position synchronization 
errors, which are defined as a subset of all possible pairs of 
two neighboring robots in the following way: 

11

33222

22111

ecec

ecec
ecec

nnn −=

−=
−=

ε

ε
ε

                             (6) 

where iε  denotes the synchronization error of the robot i. 
Obviously, if the synchronization error 0=iε  for all 

ni ~1= , the synchronization goal (5) can be achieved 
automatically. The synchronization error represents the 
degree of coordination amongst the actuated robots in the 
formation, and is not equivalent to the conventional tracking 
error. Employment of the synchronization error provides 
each robot with motion information both from itself and from 
the other robots. Hence, the motions of all robots are well 
coordinated.  

Now the control problem is to drive n robots converge to 
each target position so that 0=ie , while achieving the 
formation control goal (5) by regulating the synchronization 
errors in (6) to zero. The next objective is to design a 
controller that guarantees asymptotic convergence to zero of 
both the position error ie  and the synchronization error iε . 
In a similar manner to [21], the robot i can be designed to 
approach its target position d

iq  while synchronizing its 
motion with its two neighboring robots. By this way, the 
control of each robot does not require the information of all 
robots except for two neighbors, and hence the 
implementation is greatly simplified. 

The above development shows how to make a formulation 
to pose the formation control problem as a synchronization 
control problem. The synchronization errors are defined 
based on the formation control goal 0)q(S =∂ , and thereby 
represent the formation errors implicitly. The approach is 
extensible to an arbitrary formation shape if it can be 
constrained by (3). 

III. SYNCHRONIZATION CONTROL DESIGN  
Define a coupled position error as 

( )∫ −+= −
t

iiiii dwecE 0 1εεβ                   (7) 
where  β  is a positive constant, and w is a variable from time 
zero to t. The synchronization error iε  in (7) is subject to the 
boundary condition that when i=1, i-1=n. Note that the 

coupled position error iE  of the robot i contains the 
information of two neighboring robot i-1 and i+1, which can 
be seen from eq. (7) and the definition of iε  in (6). 

Differentiating iE  with respect to time yields 

( )1−−++= iiiiiii ececE εεβ                (8) 
To construct an asymptotically stable tracking controller to 

drive 0→iE  and 0→iE , we utilize [28] to introduce a 
command vector iu  that leads to combined position and 
velocity errors. Unlike [28], here there exists a time-varying 
coupling parameter ic  in addition to ie  in (7). Hence, we 
may define the command vector iu  as follows: 

( ) iiiii
d
iii Eecqcu Λ+−++= −1εεβ          (9) 

where Λ is a diagonal positive gain matrix. Definition of iu  
in (9) leads to the following position/velocity vectors: 

( )
ii

iiiiiiiiiii

EE

Eececqcur

Λ+=

Λ+−++=−= −1εεβ
         (10) 

Now the control objective is to design the torque input iτ  
to restrict ir  to lie on the sliding surface [28], so that the 

coupled errors iE  and iE  tend to zero. For easy 
implementation, the torque control input is ideally designed 
in a decentralized architecture, and each robot control only 
considers the synchronization between this robot and its two 
neighbors but not all others. Further, adding the 
synchronization control would not affect the stability of the 
whole system. 

We finally design the controller as follows: 
)()( 1

11
−

−− −++−= ii
T
iiiriiiiii KcrcKqcuc εετ ε    (11) 

where riK  and εK  are positive feedback control gains. The 
last term in (11) is used to compensate for the effect of 
introducing the cross-coupling control on the overall system 
dynamics, which is required by the stability analysis. 

It appears that parameters β  in (7) and εK  in (11) will 
dominate the control of the synchronization error. β  plays a 
major role to reduce the synchronization error, while εK  
ensures the stability of the system when adding the 
cross-coupling control with β  on the overall system 
dynamics. 

Substituting (11) into the robot dynamics (1) yields the 
closed-loop dynamics: 

0)( 1
11 =−++ −

−−
ii

T
iiiriii KcrcKrc εεε            (12) 

Theorem 1 The proposed tracking controller (10) leads to 
asymptotic stability of the system, namely, 0→ie  and 

0→iε  as time ∞→t , under the condition that the control 

gain riK  is large enough to satisfy ( ) ( )iiri ccK 1
maxmin

−≥ λλ , 
where ( )⋅minλ  and ( )⋅maxλ  denote the minimum and 
maximum eigenvalues of the matrices. 
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Proof: Define a Lyapunov function candidate as 
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Differentiating V  with respect to time yields 
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Multiplying both sides of (12) by ( )Tii rc 1−  yields 

( ) ( ) ( ) 01
1111 =−++ −

−−−−
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T
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T
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T
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Substituting (15) into (14) yields 
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From (7)~(10), we have 
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Substituting (17) into (16) and utilizing the condition of 

Theorem 1, we have 
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Therefore, 0→ir  and 0→iε as time ∞→t . The 
synchronization goal (5) is achieved. From (10), we further 
have 0→iE . 

We now prove 0=ie  when 0=iE  and 0=iε . 
Combining all equations in (7) from i to n, we have 

02211 =+++ nnececec                        (19) 
Substituting (5) into (19) yields  

02211 ==== nnececec . 
Since ic  is not zero, 0=ie . Therefore, the system is 

asymptotically stable.                                                               ■ 

IV. SIMULATIONS  
Simulations were performed in Matlab to verify 

effectiveness of the proposed synchronization control 
approach for formation.  Fig. 1 illustrates twenty 
fully-actuated mobile robots standing on an ellipse curve.  
The robots, denoted by little squares, are required to move as 
a whole to approach the final desired ellipse curve denoted by 
dashed line in Fig. 1. During the switch of formations, the 
robots must maintain a set of ellipse curves with the given 
time-varying longest and shortest radices. In particular, each 
robot tracks its individual desired trajectory that is 
determined according to the desired formation and the index 

of each robot represented by the angle 







=

i

i
i x

y
arctanα . 

Meanwhile, all robots must maintain the desired ellipse 
formation (that is time-varying) during the tracking. 

 
Fig. 1. The desired ellipse formation 

Define that the longest and the shortest radices of the 
ellipse change in the following way: 
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where 0a  and fa  denote the initial and the final desired 

longest radices of the ellipse,  0b  and fb  denote the initial 

and the final desired shortest radices of the ellipse. The 
equation of ellipse curve has been given in (2). The coupling 
parameters are thereby defined as 
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For comparison purpose, two control algorithms have been 
applied in the simulations. One is the proposed synchronous 
control. The other one is the non-synchronous control by 
setting  1=ic , 0=β , and 0=εK . Since ic  has significant 
effect to the position error ie  as seen in (8), a very large 
value of ic  may affect the comparison of the two algorithms. 
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To overcome this problem, we multiplied a scale value of 0.1 
to ic  in the simulations. 

 
Fig. 2. Robot trajectories and switching between formations. 
The control gains were chosen as follows: Λ =20, 
εK =1, 100=rK , and 5.0=β . When using the 

non-synchronous control, 0=β  and 0=εK . The sampling 
period was set to 0.005sec. Fig. 2 illustrates trajectories of all 
robots, where switching between the initial to final 
formations is clearly shown. Figs. 3 and 4 illustrate the 
position errors of all twenty robots under the proposed 
synchronous control and the non-synchronous control, 
respectively. It is seen that all position errors converge to 
zero successfully, and the errors of the synchronous control 
appear to be smaller than those of the non-synchronous 
control. These results indicate that the proposed 
synchronization control can completes the robot trajectory 
tracking task successfully, with even better motion 
performance than the non-synchronous control. Figs. 5 and 6 
illustrate the synchronization errors with the two control 
algorithms. Note that these synchronization errors actually 
represent the formation errors. Apparently, the 
synchronization errors under the synchronous control are 
much smaller than those under the non-synchronous control. 
Table 1 gives a detailed comparison of the synchronization 
errors of each individual robot under the two control 
algorithms. Smaller synchronization error implies better 
formation. 

Table 1: The maximum synchronization errors (m) 

Robots non-synchronous 
control 

synchronous 
control 

Robot 1 1.164 0.011 
Robot 2 1.223 0.315 
Robot 3 0.530 0.244 
Robot 4 0.446 0.119 
Robot 5 1.060 0.039 
Robot 6 1.223 0.001 
Robot 7 1.012 0.043 
Robot 8 0.428 0.122 
Robot 9 0.587 0.251 
Robot 10 1.210 0.307 

Robot 11 1.182 0.011 
Robot 12 1.219 0.310 
Robot 13 0.522 0.245 
Robot 14 0.440 0.120 
Robot 15 1.055 0.039 
Robot 16 1.242 0.001 
Robot 17 1.013 0.042 
Robot 18 0.440 0.123 
Robot 19 0.573 0.249 
Robot 20 1.210 0.305 

 
Fig. 3.  Position errors with the synchronous control 

 
Fig. 4.  Position errors with the non-synchronous control 

IV. CONCLUSIONS 
In this paper, a synchronous control approach is developed 

for switching between formations of swarms of robots. A 
position synchronization error is defined as differential 
position error between every pair of two neighboring robots. 
A decentralized trajectory tracking controller is then 
developed with feedback of both position and 
synchronization errors, formed with a combination of 
feedforward and feedback control. It is proven that the 
developed controller guarantees asymptotic convergence to 
zero of both position and synchronization errors. The 
simulation results demonstrate the effectiveness of the 
proposed synchronous control strategy for the formation 
control. Future work will be an extension of this 
synchronization control approach to real group of mobile 
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robots with considerations of robot/environment uncertainty 
and vision/sensing systems. 

 
Fig. 5. Synchronization errors with the synchronous control 

 
Fig. 6. Synchronization errors without the non-synchronous control 
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