
 
 

 

  

Abstract—This paper presents the structural synthesis of 
fully-isotropic parallel wrists (PWs) with three degrees of 
freedom. The mobile platform has 3 rotations (3R) driven by 
three actuators mounted on the fixed base. A method is 
proposed for structural synthesis of 3R-PWs with uncoupled 
motions and fully-isotropic based on the theory of linear 
transformations. A one-to-one correspondence exists between 
the actuated joint velocity space and the operational velocity 
space of the moving platform. The Jacobian matrix mapping 
the three vector spaces of 3R-PWs with uncoupled motions is a 
3×3 diagonal matrix. We use the condition number and the 
manipulability ellipsoids for their performance analysis. The 
Jacobian matrix of the fully-isotropic 3R-PWs presented in this 
paper is the 3×3 identity matrix throughout their entire 
workspace. The condition number and the determinant of the 
Jacobian matrix being equal to one, the manipulator performs 
very well with regard to force and motion transmission 
capabilities. As far as we are aware, this paper presents for the 
first time solutions of fully-isotropic three-degree-of-freedom 
parallel wrists.  
 

I. INTRODUCTION 
Parallel manipulators (PMs) consists of an output link 

(mobile platform) connected to the base (fixed platform) by 
at least two kinematic chains called legs. With respect to 
serial manipulators, such mechanisms can offer advantages 
in terms of stiffness, accuracy, load-to-weight ratio, dynamic 
performances. Their disadvantages include smaller 
workspace, complex command and a lower dexterity due to 
a high motion coupling and multiplicity of singularities 
inside their workspace. Uncoupled and fully-isotropic 
parallel manipulators can overcome these disadvantages. 
They have a very simple command and could achieve high 
energy-saving due to the fact that for a unidirectional motion 
only one motor works and the others are locked.   

Isotropicity of a robotic manipulator is related to the 
condition number of its Jacobian matrix, which can be 
calculated as the ratio of the largest and the smallest singular 
values. A robotic manipulator is fully-isotropic if its 
Jacobian matrix is isotropic throughout the entire 
workspace, i.e., the condition number of the Jacobian matrix 
is equal to one. We know that the Jacobian matrix of a 
robotic manipulator is the matrix mapping (i) the actuated 
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joint velocity space and the end-effector velocity space, and 
(ii) the static load on the end-effector and the actuated joint 
forces or torques. Thus, the condition number of the 
Jacobian matrix is a useful performance indicator 
characterizing the distortion of a unit ball under this linear 
mapping. The condition number of the Jacobian matrix was 
first used to design mechanical fingers [1] and developed 
later as a kinetostatic performance index of robotic 
mechanical systems [2]. The isotropic design aims at ideal 
kinematic and dynamic performance of the robotic 
manipulator [3].  

Three-degree-of-freedom (3-DoF) parallel wrists (PWs) 
are used in many applications that require orienting a body 
in space and enabling three independent rotations (3R) of 
the mobile platform about a fixed point [4].  

Three general architectures of 3-DoF PWs are known 
today: spherical, non-spherical and wrists with a passive leg. 
The solutions based on spherical mechanisms use only 
revolute joints with intersecting axes in a common point that 
is the centre of the sperical motion [5-10]. Agile Eye [9] 
used as camera-orienting device is an overconstrained PW 
that achieves the spherical motion of the platform by using 
the common constraints of spherical mechanisms. The main 
drawback of this overconstrained architecture is that the 
mechanism jams or high internal stresses arise in the links 
when geometric errors occur. Argos [11] is a 3-DoF 
spherical remote-centre-of–motion PW for force reflexion in 
a haptic device with a non-spherical architecture. It is based 
on pantograph mechanisms integrated in the three parallel 
drive chains that connect the end-effector to the base.  
Various solutions of 3-DoF PWs with non-spherical 
architecture have been proposed in [12-17].  Solutions of 
PWs with a passive leg reduced to a single spherical joint 
and three actuated legs have been presented in [4], [18]. We 
note that all solutions of 3-DoF PWs presented in the 
literature have coupled motions.  Just some solutions of 2-
DoF PWs with uncoupled motions and fully-isotropic have 
been recently proposed [19].  

As far as we are aware, no solutions of 3-DoF fully-
isotropic PWs have been presented in the literature. The 
main aims of this paper is to present two new families of 3-
degree-of-freedom PWs with uncoupled motions and fully-
isotropic and to emphasize on the structural synthesis 
approach that allowed us to obtain them.  

The general methods used for structural synthesis of 
parallel mechanisms can be divided into three approaches: 
the method based on displacement group theory [20]-[22], 
the methods based on screw algebra [15-16], [23]-[28] and 
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the methods based on the theory of linear transformations 
[19], [29]-[34]. The approach proposed in this paper 
represents an extension of the methods founded on the 
theory of linear transformations to structural synthesis of 3-
DoF fully-isotropic PWs. This approach integrates the new 
formulae of mobility, connectivity, redundancy and 
overconstraints of parallel manipulators proposed in [35], 
[36] and demonstrated via the theory of linear 
transformations. 

II. STRUCTURAL SYNTHESIS  
The basic kinematic structure of a 3R-type PW discussed 

in this paper is obtained by using three open kinematic 
chains Ai (1≡0-…-nAi≡n), i=1,2,3. The first link of each leg 
is the fixed platform (1Ai≡0) and the final link is the moving 
platform (nAi≡n). The first joint of each kinematic chain Ai 
(i=1,2,3) is actuated. We denote by iq and iq  (i=1,2,3)  the 
finite displacements and the velocities in the actuated joints 
and we consider , ,α β δ  and 1ω α= , 2ω β= , 3ω δ=  the 
finite displacements and the  angular velocities of the mobile 
platform.  

The linear mapping between the actuated joint space and 
the operational space of the moving platform of a 3R-type 
PWs is given by  

 
[ ] [ ][ ]J=ω q                    (1) 
 

where : [ω ]=[α β δ ]T is the angular velocity of the 
moving platform, [ q ]=[ 1q 2q 3q ]T are the velocities of the 
actuated joints and [J] is the Jacobian matrix.  

We distinguish four types of PWs: (i) fully-isotropic PWs, 
when the Jacobian J is an diagonal matrix with identical 
diagonal elements throughout the entire workspace, (ii) PWs 
with uncoupled motions if J is a diagonal matrix with 
different diagonal elements, (iii) PWs with decoupled 
motions, if J is a triangular matrix and (iv) PWs with 
coupled motions if J is neither a triangular nor a diagonal 
matrix.  

The mechanism associated to a PW with uncoupled 
motions is denoted by Q. The existence of this mechanism 
involves the following conditions for the connectivity 
(spatiality) Q

n / 1S  between the moving and the fixed platforms 

(n and 1≡0) and for the base ( Q
n / 1R ) of the vector space of 

relative velocities of the moving platform:   
a) general conditions for any position of the mechanism 

when 1q ≠0 , 2q ≠0  and 3q ≠0   
Q
n / 1S 3= ,                                     (2) 

( Q
n / 1R )=( 1ω , 2ω , 3ω ),                                    (3) 

b) particular conditions when 1q =0 
Q
n / 1S 2= ,                               (4) 

( Q
n / 1R )= ( 2ω , 3ω ),                       (5) 

b) particular conditions when 2q =0 
Q
n / 1S 2= ,                               (6) 

( Q
n / 1R )= ( 1ω , 3ω ),                           (7) 

c) particular conditions when 3q =0 
Q
n / 1S 2= ,                               (8) 

( Q
n / 1R )= ( 1ω , 2ω ).                           (9) 

The base ( Q
n / 1R ) mentioned above must be unique base of 

the vector space of the relative velocities of the mobile 
platform. This base is given by: 

 
( Q

n / 1R )=( A1 A2 A3
nA1 / 1 nA2 / 1 nA3 / 1R R R∩ ∩ ).                     (10) 

 
We recall that the connectivity (spatiality) /1

Q
nS  between 

the moving and the fixed platforms in the mechanism Q 
represents the number of relative independent infinitesimal 
displacements or velocities allowed by the mechanism 
between the two platforms. It is given by the dimension of 
the vector space /1

Q
nR  of the relative velocities between the 

two platforms [35]: 
 

/1 /1dim( )Q Q
n nS R= .                    (11) 

 
If the Jacobian J is a diagonal matrix, the singular values 

are equal to the diagonal elements. The Jacobian J of a fully 
isotropic mechanism has non zero identical singular values 
and unit condition number. Consequently, a PW with 
uncoupled motions is fully isotropic if all diagonal elements 
of its Jacobian matrix are identical. In this case Eq. (1) 
becomes  

 
[ ] [ ][ ]I qω λ=                      (12) 
 

where λ  is the value of the diagonal elements, [ ]I is the 
3×3 identity matrix. The mechanism Q respecting Eq. (12) is 
fully-isotropic and implicitly it has uncoupled motions. The 
mechanism Q achieves a homothetic transformation of 
coefficient λ  between the velocity of the actuated joints and 
the velocity of the moving platform. When λ =1 the 
Jacobian matrix ( [ ]J Iλ= ) becomes the 3×3 identity 
matrix. The condition number and the determinant of the 
Jacobian matrix being equal to one, the manipulator 
performs very well with regard to force and motion 
transmission. We focus on this particular case in section 4.  

III. KINEMATIC STRUCTURES WITH UNCOUPLED MOTIONS  
 We consider that the first joint of each leg Ai (i=1,2,3) is 

actuated (the underlined joint) and we denote by MAi the 
mobility of Ai-leg.  The simplest architecture for leg A1 is a 
serial kinematic chain with three revolute joints of type R-R-
R having orthogonal and concurrent axes. This architecture 
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has ( Q
n / 1R )=( 1ω , 2ω , 3ω ) and MA1= A1

nA1 / 1S =3. It respects the 
general conditions (2-3) and the particular conditions (4-5). 
The simplest architectures of open kinematic chains A2 have 

A2
nA2 / 1 x y z 1 2 3( R ) ( v ,v ,v , , , )ω ω ω=  and MA2= A2

nA2 / 1S =6, where 

x y zv ,v ,v  represent the linear velocities of  point O0 situated 
on the output link nA2≡5. These architectures respect the 
general conditions (2-3) and the particular conditions (6-7) 
and they are of type P’-R’-R’-S and P’-R’-P-S. Just revolute 
(R), prismatic (P) and spherical joint (S) are used in these 
solutions in which two consecutive revolute and prismatic 
joints have parallel or perpendicular axes. The revolute and 
prismatic joints marked by apostrophe have parallel  
 

 
 
Fig. 1. Kinematic structure RRR-PRRS-RHJ-type with uncoupled motions  

 

 
Fig. 2. Kinematic structure RRR-PRPS-RHJ-type with uncoupled motions 

axes/directions. The simplest architecture of open kinematic 
chain A3 is of type R-HJ  with A3

nA3 / 1 1 2 3( R ) ( , , )ω ω ω=  and 

MA3= A3
nA3 / 1S =6. It respects the general conditions (2-3) and 

the particular conditions (8-9) and. This leg integrates a 
homokinetic joint (HJ) and centre O0 of the spherical motion  

is not reachable (Figs. 1 and 2). It is easier to get to this 
point if we use a leg of type R-HJ-P-HJ. This leg integrates 
two homokinetic joints connected by a telescopic shaft 
(Figs. 3 and 4) and has MA3= A3

nA3 / 1S =6 with A2
nA2 / 1( R ) =  

x y z 1 2 3( v ,v ,v , , , )ω ω ω . Just the input and the output shafts 
are indicated in figures for each homokinetic joint. The 
intermediary members of the homokinetic joints are not 
indicated. Various types of homokinetic joints could be 
used: Tracta, Weiss, Bendix, Dunlop, Rzeppa, Birfield, 
Glaenzer, Thompson, Triplan, Tripode, UF (undercut-free) 
ball joint, AC (angular contact) ball joint, VL plunge ball 
joint, DO (double offset) plunge ball joint, AAR (angular  
 

 
 
Fig. 3. Kinematic structure RRR-PRRS-RHJPHJ-type with uncoupled 
motions 
 
 

 
Fig. 4. Kinematic structure RRR-PRPS-RHJPHJ-type with uncoupled 
motions 
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adjusted roller), helical flexure U-joints, etc. [37]. We can 
see that legs A1 and A3 are actuated by the revolute motors 
and the leg A2 by a linear motor.  

By connecting the legs Ai (i=1,2,3) to the output link 
n≡nA1≡nA2≡nA3 we obtain the architectures of PWs with 
uncoupled motions presented in Figs. 1-4 for solutions with 
non accessible (Figs. 1 and 2) and accessible (Figs. 3 and 
4)centre of the spherical motion. To simplify the notations 
of links eAi (i=1,2,3 and e=1,2,…,n) by avoiding the double 
index in Fig. 1 and the following figures we have denoted by 
eA the elements belonging to leg A1 (eA≡eA1), by eB and eC 
the elements of legs A2 (eB≡eA2) and  A3 (eC≡eA3). The 
solutions from Figs. 1 and 3 have no unactuated prismatic 
joints and the solutions from Figs. 2 and 4 have one 
unactuated prismatic joint. 

In all cases, the three rotational motions are uncoupled, 
that is each rotation of the moving platform is achieved by 
only one actuator. 

The linear mapping (1) becomes: 
 

1 1

2 2

3 3

1 0 0 q
0 a 0 q
0 0 1 q

ω
ω
ω

     
     =     
          

,   1a
r cos β

= ,                  (13) 

 
where r is the length of the output link (r=O0N). Point N 
represents the centre of the spherical joint of A2-leg (see 
Figs. 1 and 2). We can see that 1 1qω = ,  2 2aqω =  and 

3 3qω = .  
To compare the singular values of the Jacobian matrix of 

linear mapping (13), the elements of this matrix should have 
the same units. From (13), the elements of the first and the 
third column of the Jacobian matrix J are non-dimensional. 
The second column has the unit of length-1. The 
characteristic length of the manipulator, i.e., l, is used to 
homogenize the elements of the Jacobian matrix so that the 
condition number is non-dimensional. The characteristic 
length renders the Jacobian dimensionally homogeneous and 
optimally conditioned, i.e., with a minimum condition 
number [2]. For joint rates belonging to a unit sphere the 
operational velocities of the moving platform belong to an 
ellipsoid. The eigenvectors of the matrix (JJT)-1 define the 
direction of the principal axes of this ellipsoid. The square  
 

 
Fig. 5. Variation of the transmission factor 2ψ with the rotation angle: for 
the characteristic length r=l=1 (a) and for various values of the platform 
length (b). 

roots iξ  (i=1,2,3) of the eigenvalues of (JJT)-1 are the 
lengths of the aforementioned principal axes. The velocity 
transmission factors in the directions of the principal axes 
are defined by i i1 /ψ ξ= . These transmission factors can be 
used to define the joint limits [38]. The PWs presented in 
Figs. 1-4 have 1 1ψ = , 2 1 /( r cos )ψ β=  and 3 1ψ = . The 
variation of the transmission factor 2ψ  with the rotation 
angle of the moving platform is presented in Fig. 5. In Fig. 5 
(a) we considered that the platform length is equal to the 
characteristic length (r=l=1). In Fig. 5 (b) various values of 
platform length are considered. For 1 r 2≤ ≤  and 

[ ]60 ,60β ∈ − ° °  the transmission factor is 20.4 2ψ≤ ≤ . 
The isotropic configuration of the PWs presented in Figs. 

1 and 4 is obtained when 0β =  and l=r=1. In this 
configuration, the Jacobian becomes the 3×3 identity matrix 
and (13) maps the joint rates belonging to a unit sphere into 
operational velocities belonging to unit sphere too.  

IV. FULLY-ISOTROPIC KINEMATIC STRUCTURES  
  Fully-isotropic PWs can be obtained by using legs A1 

and A3 presented in the previous section and a leg A2 
actuated by a rotary motor by respecting the general 
conditions(2-3) and the particular conditions (6-7)–see Figs. 
6-9. The simplest architectures of leg A2 have 
MA2= A2

nA2 / 1S =6 and A2
nA2 / 1 x y z 1 2 3( R ) ( v ,v ,v , , , )ω ω ω= . These 

architectures are of type Pa-R’-R’-S and Pa-R-P-S. A planar 
parallelogram loop (Pa) is integrated in each leg. The axes of 
the four revolute pairs of this parallelogram mechanism are 
parallel to xy- plane. Leg A2 is actuated by a rotary motor 
fixed on the base and integrated in the parallelogram loop. In 
this way, a complex kinematic chain integrating the 
parallelogram loop Pa is associated with each leg A2. By 
connecting legs Ai to output link n≡nA1≡nA2≡nA3 we obtain  

 

 
 
Fig. 6. Kinematic structure of fully-isotropic PW RRR-PaRRS-RHJ-type  
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Fig. 7. Kinematic structure of fully-isotropic PW RRR-PaRPS-RHJ-type  
 
 
 

 
 
Fig. 8. Kinematic structure of fully-isotropic PW RRR-PaRRS-RHJPHJ-
type  
 
the architectures of fully-isotropic PWs presented in Figs. 6-
9. We can see that these solutions of fully-isotropic PWs are 
obtained from the solutions of PWs with uncoupled motions 
presented in the previous section by replacing the first 
prismatic pair of leg A2 by a parallelogram loop. In this way, 
the three legs are actuated by rotary motors. The Jacobian 
matrix of these solutions is the 3×3 identity matrix 
throughout their entire workspace. 

 Advantages of these fully-isotropic solutions include: (i) 
high stiffness enabling orientation of large loads with high 
angular velocities and accelerations, (ii) simplification of 
inverse kinematic computation, (iii) the three actuators are   

 

 
 
Fig. 9. Kinematic structure of fully-isotropic PW RRR-PaRPS-RHJPHJ-
type  
 
situated on the fixed base. Moreover, solutions in Figs. 8 
and 9 have the ability to position the working device at the 
geometric centre of rotation thereby reducing inertia. The 
workspace of these solutions must be correlated with the 
angular capability of the homokinetic joints and translational 
capability of the telescopic shafts. 

V. CONCLUSIONS  
An approach has been proposed for structural synthesis of 

three degree-of-freedom parallel wrists that are fully-
isotropic throughout their entire workspace. The Jacobian 
matrix mapping the joint and the operational vector spaces 
of the fully-isotropic PWs presented in this paper is the 3×3 
identity matrix throughout the entire workspace. Fully-
isotropic PWs presented in this paper give a one-to-one 
mapping between the actuated joint velocity space and the 
operational velocity space. The condition number and the 
determinant of the Jacobian matrix being equal to one, the 
manipulator performs very well with regard to force and 
motion transmission. Moreover, the actuators are mounted 
directly on the base, effectively contributing to the reduction 
of the weight of the moving parts. The solutions presented in 
this paper overcome many disadvantages usually affecting 
parallel manipulators. These PWs can support a payload at 
the center of rotation providing a large workspace, 
simplified kinematic computations, reduced inertia and 
reduction of interference between the payload and the 
mechanism within the working space. Special legs have 
been conceived to achieve fully-isotropic condition.  
Examples of parallel wrists with uncoupled motions and 
fully-isotropic parallel wrists are presented in this paper to 
illustrate the proposed approach. As far as we are aware, this 
paper presents for the first time fully-isotropic parallel wrists 
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with three degrees of freedom and an innovative method for 
their structural synthesis.  
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