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Abstract— This paper considers the problem of realizing
visual servoing taking into account constraints such as visibility
and workspace constraints while minimizing a cost function
such as spanned image area and trajectory length. A new path-
planning scheme is proposed by, first, introducing a robust
object reconstruction which allows one to obtain feasible image
trajectories. Second, the rotation path is parameterized through
a particular extension of the Euler parameters in order to
obtain an equivalent expression of the rotation matrix as a
quadratic function of unconstrained variables, hence largely
simplified with respect to standard parameterizations which in-
volve transcendental functions. Then, polynomials of arbitrary
degree are used to complete the parametrization and formulate
a general optimization where a number of constraints and
costs can be considered. The optimal trajectory is followed by
tracking the image trajectories with standard IBVS controllers.

Keywords: Visual servoing, Teaching-by-showing approach,

Constraints, Costs, Path-planning.

I. INTRODUCTION

In recent years, the “teaching-by-showing” approach has

received an increasing attention. It consists of teaching the

desired location for an eye-in-hand robotic system by show-

ing the view of some reference features in such a location.

The camera is then moved to another location from which

must be steered to the desired location by exploiting the

current and desired view of the features. See for example

[5], [7], [10] for detailed classifications of visual servoing

approaches. Several methods to deal with this task have

been proposed. Some examples are the position-based visual

servoing (PBVS) where the feedback error is the camera

pose (see for example [18], [19]), and the image-based visual

servoing (IBVS) where the feedback error is the image error

(see for example [6], [16]). In the 2 1/2 D visual servoing

[10] the feedback error contains both the camera pose and

the image error. Then, other methods exploit partitioning

techniques [2], [14], navigation functions [3], invariance with

respect to the intrinsic parameters [8], image moments [17],

generation of circular-like trajectories [1].

When controlling a robot, convergence and robustness

are not the only important issues. In fact, workspace limits

should be taken into account in order to obtain a trajectory

that does not make the robot end-effector colliding with

obstacles present in the scene. Analogously, joint limits

should be considered because the robot could be unable to

reach a certain location due to its particular structure. And,

besides issues concerning the physical constraints, there are

G. Chesi (corresponding author) and Y.S. Hung are with the Department
of Electrical and Electronic Engineering, University of Hong Kong, E-mail:
{chesi,yshung}@eee.hku.hk

also issues concerning the performance. In fact, when more

than one feasible robot trajectory exist, one could also be

interested in finding the shortest trajectory, or the smoothest

trajectory, or the trajectory which maximizes the visibility

margin.

This paper proposes a new path-planning technique in the

image space which allows one to consider constraints such

as visibility and workspace constraints, together with the

objective of minimizing trajectory costs such as length and

spanned image area. This is achieved by parameterizing in

the six-dimensional rigid motion space all the trajectories

connecting the initial to the desired location which, although

unknown, can be relatively computed through an object

reconstruction from image measurements and, if available,

also a cad model of the observed object. In order to deal

with calibration errors and image noise, a new robust object

reconstruction is proposed which allows one to obtain image

trajectories satisfying the boundary conditions. In order to

obtain functions that can be efficiently handled in opti-

mization tools, the rotation path is parameterized through

a particular extension of the Euler parameters which allows

one to obtain an equivalent expression of the rotation as a

quadratic function of unconstrained variables. Polynomials of

arbitrary degree are then used to complete the parametriza-

tion. Once the image trajectories have been computed, the

camera is steered to the desired location by using standard

IBVS controllers.

It is worthwhile to notice that other path-planning methods

have been proposed in [11], [12], [15], [20] which solve

related problems by exploiting, in a discretized framework,

optimal control formulations, screw motions, and geodesic

paths modulated by repulsive potential fields respectively.

The approach in this paper proposes a new strategy which

consists of parameterizing all the possible trajectories and

makes possible considering a number of constraints to fulfill

and costs to minimize. This is achieved by using a new ap-

proach based on parameter-dependent object reconstruction

and extended Euler parameters.

II. PRELIMINARIES

Let us introduce the following notation. Let R denote the

real number set, SO(3) the set of rotation matrices in R
3×3,

and SE(3) the cartesian product SO(3) × R
3. We denote

with In the identity matrix n× n, 0n the null vector n× 1,

1n the vector n × 1 with all elements equal to 1, ei the

i-th column of I3, and [v]
×

the skew-symmetric matrix of

v ∈ R
3. Moreover:

- A ∈ R
3×3: upper triangular intrinsic parameters matrix;
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- F◦,F∗: initial and desired camera frames with pose

{O◦, c◦}, {O∗, c∗} ∈ SE(3) with respect to the abso-

lute frame;

- ρi ∈ R
3: i-th point in the three-dimensional space

expressed with respect to the absolute frame;

- p◦

i = [x◦

i , y
◦

i , 1]′,p∗

i = [x∗

i , y
∗

i , 1]′ ∈ R
3: projections

in pixel coordinates of the i-th point on F◦ and F∗

according to
{

α◦

i p
◦

i = AO◦T (ρi − c◦)
α∗

i p
∗

i = AO∗T (ρi − c∗)
(1)

where α◦

i , α
∗

i ∈ R are the point depths;

- P(F∗,F◦) ∈ SE(3): camera pose {R, t} of F∗ with

respect to F◦, according to
{

R = O◦TO∗

t = O◦T (c∗ − c◦)
(2)

Let us suppose that a set S = {(p◦

i ,p
∗

i ), i = 1, . . . , n}
of n object point correspondences is available. The prob-

lem consists of steering the camera from the initial to the

desired location satisfying constraints such as visibility and

workspace constraints while optimizing a certain trajectory

cost.

III. PATH-PLANNING

The strategy proposed in this paper consists of generating

trajectories of the object points in the image and then

tracking them by using IBVS controllers. We indicate these

image trajectories with pi(w) where w ∈ [0, 1] is the

trajectory abscise, with w = 0 indicating the initial location

and w = 1 the desired location. The vector pi(w) must

satisfy the boundary conditions
{

pi(0) = p◦

i

pi(1) = p∗

i
(3)

The above conditions are not the only constraints that pi(w)
must satisfy. In fact, the set of pi(w), i = 1, . . . , n, must be

such that there exists a parameter-dependent camera frame

from which the observed object points match the pi(w)
for all w ∈ [0, 1]. In order to cope with this problem as

well as facilitate the task of taking into account constraints

and trajectory costs defined outside the image space, we

introduce a new parametrization as described in the following

sections.

A. Trajectory parametrization

From S, A, and the cad model of the object (that is

the set of physical points ri), one can calculate the camera

pose {R, t} by solving (1)–(2) through linear least-squares

techniques. If the cad model of the object is not available, t

can be computed only up to a scale factor which stands for

the unknown distance between the initial and desired frame

origins. Indeed, the normalized camera pose {R, tnorm}
with tnorm = t/‖t‖ can be computed through the essential

matrix algorithm or the homography matrix algorithm rela-

tive to a virtual plane in the case of non coplanar features

supposing n ≥ 8. If the features are known to be coplanar,

the camera pose can be computed through the homography

matrix algorithm supposing n ≥ 4. See [4] and [9] for

details. For pure rotation motion, i.e. t = 03, the normalized

translation is defined as tnorm = 03.

Let {R,d} be the estimated camera pose, being d ei-

ther the physical translation t or the normalized translation

tnorm. Let Fd(w) be the camera frame in the reconstruction

space (that is relative to the available translation d). Let us

define the pose of Fd(w) with respect to F◦ as

P(Fd(w),F◦) = {R(w),d(w)}. (4)

At the extreme points of the trajectory this pose must satisfy
{

{R(0),d(0)} = {I3,03}
{R(1),d(1)} = {R,d}

(5)

In ideal conditions, that is in the absence of calibration errors

and image noise, the trajectory of the i-th object point can

be expressed in function of R(w) and d(w) as

ᾱi(w)pi(w) = AR(w)T (ui − d(w)) . (6)

where ᾱi(w) is the parameterized point depth and ui is the

i-th physical point ρi in the reconstruction space known

as object reconstruction. This object reconstruction can be

computed by solving the system
{

ᾱi(0)p◦

i = Aui

ᾱi(1)p∗

i = ART (ui − d)
(7)

which amounts to calculating a SVD by eliminating the

point depths ᾱi(0), ᾱi(1). Hence, the sought trajectory can

be expressed as the solution of the following constrained

minimization problem:

min
R(w):R→SO(3),d(w):R→R3

h(R(w),d(w))

s.t.







pose boundary conditions (5)

image boundary conditions (3)

gk(w,R(w),d(w)) > 0 ∀w ∈ [0, 1] ∀k = 1, . . . , mg

(8)

where gk(w), k = 1, . . . , mg , indicate the constraints that

the camera must satisfy along the trajectory, and h is the

cost function to be minimized by the trajectory. In order to

establish if gk(w) is positive for all w ∈ [0, 1], one must

evaluate, at each step of the optimization procedure, each

function gk(w) at w = 0, at w = 1, and at the points in

[0, 1] where its derivative vanishes in order to find all the

global minima. However, this turns out to be difficult and

computationally heavy with standard parameterizations be-

cause R(w), and consequently gk(w), present transcendental

terms (see for example exponential coordinates, x-y-z angles,

etc...). In order to cope with this problem, we will derive in

the sequel a special parametrization of the trajectories for

which the functions gk(w) are polynomial in w.

B. Robust object reconstruction

In the presence of calibration errors and image noise, the

system (7) may admit no solution for ui. Clearly, a least-

squares solution can still be computed through SVD, but this

solution cannot allow the image trajectory pi(w) provided

by (6) to satisfy the image boundary conditions (3).
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Therefore, we look for a robust object reconstruction

which minimizes the effect of uncertainties on our robot

control. In particular, we introduce a parameter-dependent

object reconstruction ui(w) satisfying
{

α̃i(0)p◦

i = Aui(0)
α̃i(1)p∗

i = ART (ui(1) − d)
(9)

for some point depths α̃i(0), α̃i(1). Among all possible

solutions ui(w) for the above system, we select the linear

solution because it is the simplest and because it is the closest

to the ideal constant ui in (7). Hence, let us write ui(w) as

ui(w) = (1 − w)ai + bi. (10)

Since we are interested in the solution closest to the constant

one, we aim to find the ui(w) with the smallest ai which

satisfies (9), that is

min
ai,bi

‖ai‖ s.t. (9)–(10). (11)

The above optimization problem can be easily solve in

closed-form through Lagrange multipliers. The image pro-

jection pi(w) along the trajectory is then given by

α̃i(w)pi(w) = AR(w)T (ui(w) − d(w)) . (12)

C. Rotation parameter

We start by considering the representation of rotation

matrices through the Euler parameters (see for example [13]).

According to this representation, any rotation matrix can be

represented as

Λ(φ) =





φ2
1 − φ2

2 − φ2
3 + φ2

4 2 (φ1φ2 − φ3φ4)

2 (φ1φ2 + φ3φ4) −φ2
1 + φ2

2 − φ2
3 + φ2

4

2 (φ1φ3 − φ2φ4) 2 (φ2φ3 + φ1φ4)
2 (φ1φ3 + φ2φ4)
2 (φ2φ3 − φ1φ4)

−φ2
1 − φ2

2 + φ2
3 + φ2

4





(13)

for some φ ∈ R
4 satisfying ‖φ‖ = 1. Also, Λ(φ) is a

rotation matrix for any φ satisfying ‖φ‖ = 1. The Euler

parameters corresponding to R can be found as φ = ξ(R)
where

ξ(R) =

[

sin
θ

2
uT , cos

θ

2

]T

(14)

where θ ∈ [0, π] and u ∈ R
3, ‖u‖ = 1, are respectively the

rotation angle and axis in the exponential coordinates of R,

i.e. R = e[θu]
× .

Hence, one could parameterize the rotation through (13)

and the vector φ. However, φ is not free due to the constraint

‖φ‖ = 1. Clearly, one could then parameterize φ in order to

ensure this constraint, but this would require the introduction

of irrational or trigonometrical functions.

Therefore, in order to get rid of the constraint ‖φ‖ = 1 and

obtain a rational parametrization of the rotation, we introduce

the following extended Euler parametrization:

Φ(φ) =
1

‖φ‖2
Λ(φ). (15)

This parametrization satisfies the following properties. First,

for any rotation matrix R there exists φ such that R = Φ(φ).
In particular, R = Φ(γξ(R)) ∀γ 6= 0. Second, Φ(φ) is a

rotation matrix for all φ 6= 04.

We observe that we have got rid of the constraint ‖φ‖ = 1
at the expense of the denominator in (15). As it will become

clear in the next sections, this denominator does not affect

the optimization problem. We also observe that we have

derived a parametrization of the rotation based on four free

parameters while there exist parameterizations based on three

parameters only such that the exponential coordinates θ and

u previously mentioned. These parameterizations can be

equivalently used in the problem we are going to formulate

through suitable variables transformations which allow one to

finally derive a rational expression for the rotation, however

this will result in higher degree polynomials also affected

by some degenerate configurations which require a separate

investigation.

D. Polynomial parametrization

Let us parameterize the rotation of the camera frame

Fd(w) as

R(w) = Φ(φ(w)) (16)

where φ(w) is a parameterized extended Euler parameter.

The camera pose along the trajectory is hence described by

φ(w) and d(w). Let us express these vectors as polynomials

according to
{

φ(w) = M̃
[

wδM , wδM−1, . . . , w, 1
]T

d(w) = Ñ
[

wδN , wδN−1, . . . , w, 1
]T (17)

where M̃ ∈ R
4×δM +1 and Ñ ∈ R

3×δN +1 are coefficient

matrices. In order to satisfy the rotation boundary conditions

in (5), we impose
{

φ(0) = [0, 0, 0, 1]T

φ(1) = ξ(R)
(18)

(clearly, one can equivalently impose the same quantity

scaled by the same factor γ with γ 6= 0). Then, taking into

account (17), one has that the pose boundary conditions (5)

are satisfied if and only if
{

M̃
[

0T
δM

, 1
]T

= [0T
3 , 1]T , Ñ

[

0T
δN

, 1
]T

= 03

M̃1δM+1 = ξ(R), Ñ1δN +1 = d

(19)

which imply that the matrices M̃ and Ñ can be parameter-

ized as
{

M̃ = [ξ(R) − M1δM−1 − [0T
3 , 1]T ,M, [0T

3 , 1]T ]

Ñ = [d− N1δN−1,N,03]
(20)

where M ∈ R
4×δM−1 and N ∈ R

3×δN−1 are free matricial

parameters. Therefore, the camera pose along the trajectory

is parameterized by the matrices M and N, and the opti-

mization problem (8) can be rewritten as

min
M∈R

4×δM −1,N∈R
3×δN −1

h(M,N)

s.t. gk(w,M,N) > 0 ∀w ∈ [0, 1] ∀k = 1, . . . , ng

(21)
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Let us observe that the boundary conditions (5) and (3) are

implicitly satisfied in (21).

IV. CONSTRAINTS AND COSTS

A. Constraints

It is possible to include several constraints in (21) depend-

ing on the specific problem. Here we describe visibility and

workspace constraints. Similarly one can include also joint

constraints.

Visibility constraints. Let us write the image projection

pi(w) as pi(w) = [xi(w), yi(w), 1]. In order to guarantee

that the image projections along the trajectory remain in the

field of view, we have to introduce the visibility constraint

xmin < xi(w) < xmax

ymin < yi(w) < ymax

}

∀w ∈ [0, 1] ∀i = 1, . . . , n

(22)

where xmin, xmax, ymin, ymax ∈ R are the screen limits. By

eliminating the point depth α̃i(w) in (12) one obtains














xi(w) =
eT
1 AR(w)T (ui(w) − d(w))

eT
3 R(w)T (ui(w) − d(w))

yi(w) =
eT
2 AR(w)T (ui(w) − d(w))

eT
3 R(w)T (ui(w) − d(w))

(23)

Taking into account the parametrization of R(w) in (15), one

has for xi(w)

xi(w) =
eT
1 AΛ(φ(w))T (ui(w) − d(w))

eT
3 Λ(φ(w))T (ui(w) − d(w))

. (24)

As we can see, the denominator in (15) does not affect the

image projections, which means that we derive an optimiza-

tion problem where the rotation is equivalently parameterized

by a simple quadratic expression, namely Λ(φ(w)) who

depends quadratically on the parameter φ(w) and, according

to (17)–(20), depends quadratically on the parameter M. Let

us introduce the polynomials

ai,j(w) = eT
j AΛ(φ(w))T (ui(w) − d(w)) ,

i = 1, . . . , n, j = 1, 2, 3.
(25)

It follows that

xi(w) =
ai,1(w)

ai,3(w)
, yi(w) =

ai,2(w)

ai,3(w)
. (26)

Hence, the constraint (22) can be rewritten as

ai,1(w) − xminai,3(w) > 0
−ai,1(w) + xmaxai,3(w) > 0

ai,2(w) − yminai,3(w) > 0
−ai,2(w) + ymaxai,3(w) > 0

ai,3(w) > 0























∀w ∈ [0, 1]
∀i = 1, . . . , n

(27)

Let us observe that the inequality ai,3(w) > 0 has been

included in order to ensure that the object remains in front

of the camera for the whole trajectory. This allows us to

get rid of the denominator and obtain only the polynomial

inequalities in (27). Each of these inequalities represents one

inequality constraint gk(w,M,N) > 0 in (21).

Workspace constraints. Let F be the current camera frame

with pose {O, c} ∈ SE(3) with respect to the absolute

frame. Due to obstacles present in the scene, the robot

cannot reach any position of the three-dimensional space.

This means that the camera center c can assume values

in a subset of R
3 only. In our path-planning, the camera

center is represented by the translation vector d(w) as pose

with respect to the initial frame F◦. Therefore, workspace

constraints correspond to constraints on this vector. Now,

depending on the information available for the robot control

problem we are considering, two kinds of workspace con-

straints can be taken into account.

The first is the absolute workspace constraint. If the cad

model of the object is available, one can calculate the

translation of the camera pose {R, t} which is represented

by the vector d according to Section III-A. This means that

one can constraint the optimization problem (21) so that the

camera center of the generated trajectories belongs to an

absolute set referred to either the initial or the desired camera

frame. Since the desired camera frame usually represents a

reference location for the robot, we consider for instance the

case of this absolute set referred to F∗. Let

P(F ,F∗) = {Ō, c̄} (28)

be the pose of F with respect to F∗. The absolute set can

be expressed as

C =
{

c̄ ∈ R
3 : cj(c̄) > 0, j = 1, . . . , nc

}

(29)

where cj : R
3 → R are polynomials. Then, one can

constraint the trajectories in (21) so that the camera center

belongs to C by defining nc functions gk(w,M,N) as

cj(R
T (d(w) − d)), j = 1, . . . , nc (30)

for some indexes k.

The second is the scaled workspace constraint. If the cad

model of the object is not available, one can only calculate

the scaled translation tnorm of the camera pose {R, t} still

represented by the vector d in Section III-A. This means that

one can only impose scaled constraints for the camera center

o in the optimization problem (21). In particular, suppose that

we want to impose constraints referred to F∗. Then, these

constraints have the form (30) but in this case they define a

set different from (29) that is given by

Cnorm =
{

c̄ ∈ R
3 : cj(‖t‖c̄) > 0, j = 1, . . . , nc

}

. (31)

As we can see, this set depends on the initial camera pose

through the term ‖t‖. Although less general than the absolute

workspace constraints, the scaled workspace constraints can

however model typical situations in which the robot works.

B. Costs

One can consider several cost functions in (21) depending

on the specific problem. Some are as follows.

Spanned image area. Here we consider the problem of

minimizing the area spanned by the image trajectories. This

can be done defining the cost function h(M,N) = ∆ where

∆ = (σx,max − σx,min)(σy,max − σy,min) (32)
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where σx,min, σx,max, σy,min, σy,max denote the coordinates

of the boundary box of the image trajectory according to














σx,min = min{xi(w), w ∈ [0, 1], i = 1, . . . , n},
σx,max = max{xi(w), w ∈ [0, 1], i = 1, . . . , n},
σy,min = min{yi(w), w ∈ [0, 1], i = 1, . . . , n},
σy,max = max{yi(w), w ∈ [0, 1], i = 1, . . . , n}.

(33)

In order to compute these coordinates, let us consider first

σx,min. Since xi(w) in (26) is a rational function whose

denominator is positive for all w ∈ [0, 1], one can compute

σx,min by evaluating each xi(w) at the extremes point of

the trajectory and at the points in [0, 1] where its derivative

vanishes:


















σx,min = min{xi,min, i = 1, . . . , n}

xi,min = min{
ai,1(0)
ai,3(0) ,

ai,1(1)
ai,3(1)

, x̄i,min}

x̄i,min = min{
ai,1(w)
ai,3(w) , w :

∂ai,1(w)
∂w ai,3(w)

−ai,1(w)
∂ai,1(w)

∂w = 0}

(34)

Therefore, the computation of σx,min requires just the com-

putation of the roots of a one-variable polynomial. The

other coordinates σx,max, σy,min, σy,max are analogously

calculated.

Trajectory length. Another useful cost is the length of the

camera trajectory in the three-dimensional space, which can

be imposed as

h(M,N) =

∫ 1

0

∥

∥

∥

∥

∂d(w)

∂w

∥

∥

∥

∥

dw (35)

The integral can be computed through finite difference ap-

proximations in order to speed up the calculation.

V. SIMULATIONS IN IDEAL AND REAL CONDITIONS

In this section we present some examples of the proposed

approach through simulations in ideal conditions and simula-

tions in real conditions, that is in the presence of image noise,

uncertainties on the intrinsic parameters and uncertainties on

the extrinsic parameters.

Once the problem (21) has been solved, the planned

image trajectories corresponding to the optimal values of

M and N are computed, and then these image trajecto-

ries are tracked by using an IBVS controller similar to

that proposed in [11]. We suppose that the screen size

is 800 × 600 pixels and that the intrinsic parameters are

A = [400, 0, 400; 0, 400, 300; 0, 0, 1]. The real conditions are

characterized as follows.

• (RC1) Image noise: each image projection is randomly

shifted, with uniform distribution, in a square with side

equal to 1 pixel centered on the point itself.

• (RC2–RC3) Calibration errors: the matrices J (robot

Jacobian, necessary to implement the IBVS controller)

and A are supposed coarsely estimated by the estimates

Ĵ =

[

RE [tE ]
×

RE

03×3 RE

]

J, Â =





385 0 408
0 402 294
0 0 1





where tE ∈ R
3 and RE ∈ SO(3) accounts for errors

in the coordinates transformation and are selected as

tE = [2,−0.5, 0]
T

cm, RE = e[
π[0.01,0,0.02]T ]

× .

• (RC4) Non-perfect IBVS control: the point depths in the

current camera frame is supposed not exactly known. In

particular, we select to use the point depths in the virtual

camera frame Fd(w(t)) in order to lighten the on-line

computational burden.

The problem (21) is solved for simple polynomials φ(w)
and d(w) in (17) of degree 2. Once the image trajectories

are computed, the IBVS control law is applied by selecting

w equal to w = 1 − e−t/τ where τ = 10 s.

Consider the situation depicted in Figure 1a where a set

of twelve balls represents the object observed by the camera

in the initial and desired frames F◦ and F∗. A horizontal

plane with equation y = 15 cm is inserted under the object

to limit the robot workspace. Figure 1b shows the centers

of the balls in both initial and desired camera views. It is

supposed that no cad model of the object is available.

The problem consists of steering the camera from F◦

to F∗ minimizing the spanned image area. Figures 1c–d

show the results obtained without considering the workspace

constraint imposed by the presence of the plane. As we can

see, the trajectory of the camera goes under the plane. This

kind of problems can easily happen in visual servoing if the

workspace constraints are not taken into account.

In order to take into account this constraint, we can

proceed as described in Section IV. In particular, if a cad

model is available we can consider the presence of the

plane by simply defining an absolute workspace constraint

as C =
{

c̄ ∈ R
3 : c̄2 + 15 ≥ 0

}

. However, we suppose that

a cad model of the object is not available. This means that

we can describe the distance of the plane from the desired

camera frame only up to a scale factor. Therefore, the only

constraint we can impose is that the camera does not go

below the horizontal plane passing through the initial and

desired camera frames. This is achieved with the scaled

workspace constraint C =
{

c̄ ∈ R
3 : c̄2 ≥ 0

}

. Figures 1e–

f show the results obtained in ideal conditions, whereas

Figures 1g–j show the results in the real conditions RC1–

RC4. As we can see, the trajectory followed by the camera

is almost horizontal in spite of the uncertainties, and clearly

avoids the problem introduced by the workspace limitations.

Let us observe that, in the presence of image noise and

calibration errors, the real image trajectories will differ from

the planned ones, especially if a cad model of the object

is not available. In order to guarantee that the constraints

are however satisfied, one can consider more conservative

constraints in the planning phase in order to facilitate their

fulfillment by the real camera trajectory. Also, one can add to

the IBVS control law potential field techniques similar to that

used in [2] (a potential field is used on-line for the visibility

constraint) and [11] (potential fields are used off-line to plan

the camera trajectory). In our case, we can introduce an on-

line potential field for each constraint.
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Fig. 1. Example. (a-b) Initial configuration. (c-d) Results in ideal
conditions: the camera goes under the plane. (e-f) Results in ideal con-
ditions taking into account the workspace constraint. (g-h) Results in real
conditions.

VI. CONCLUSION

This paper has proposed a new path-planning scheme for

constrained and optimal visual servoing. In particular, all

the trajectories connecting the initial to the desired loca-

tion are parameterized in the six-dimensional rigid motion

space. This is achieved by introducing a new robust object

reconstruction which allows one to obtain image trajectories

satisfying the boundary conditions even in the presence of

calibration errors and image noise. In order to obtain func-

tions that can be efficiently handled in optimization tools, the

rotation path is parameterized through a particular extension

of the Euler parameters which allows one to obtain an

equivalent expression of the rotation as a quadratic function

of unconstrained variables. Polynomials of arbitrary degree

are then used to complete the parametrization and formulate

a general optimization where a number of constraints such as

visibility and workspace constraints, and a number of costs

such as spanned image area and trajectory length, can be

considered. Thanks to the introduced trajectory parametriza-

tion, establishing the fulfillment of the constraints in the

optimization procedure reduces to the simple calculation

of the roots of a one-variable polynomial, hence largely

simplified with respect to standard parameterizations which

involve transcendental functions. Once the image trajectories

have been computed, the camera is steered to the desired

location by using standard IBVS controllers.
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