
Integrated Mission Specification and Task

Allocation for Robot Teams - Design and

Implementation

Patrick Ulam, Yoichiro Endo, Alan Wagner, Ronald Arkin

College of Computing

Georgia Institute of Technology

Atlanta, USA

Email: {pulam, endo, alan.wagner, arkin}@cc.gatech.edu

Abstract— As the capabilities, range of missions, and the size
of robot teams increase, the ability for a human operator to
account for all the factors in these complex scenarios can become
exceedingly difficult. Our previous research has studied the
use of case-based reasoning (CBR) tools to assist a user in
the generation of multi-robot missions. These tools, however,
typically assume that the robots available for the mission are
of the same type (i.e., homogeneous). We loosen this assumption
through the integration of contract-net protocol (CNP) based
task allocation coupled with a CBR-based mission specification
wizard. Two alternative designs are explored for combining case-
based mission specification and CNP-based team allocation as
well as the tradeoffs that result from the selection of one of these
approaches over the other.

I. INTRODUCTION

Two challenges in fielding teams of mobile robots lie in

determining the steps a robot should follow when executing

a task (mission specification) and determining which robot

should execute a given task (task allocation). Mission spec-

ification can be a time-consuming and complex process for

users experienced in mission design, let alone for those not

intimately familiar with the domain. In the case of multi-robot

missions, the difficulty of mission specification is compounded

as the process must be repeated multiple times, increasing the

possibility for error in the design and increasing design time.

For heterogeneous teams (i.e., robots that have significantly

differing capabilities such as different sensor packages and/or

different terrain capabilities such as aerial versus ground

versus undersea unmanned vehicles), allocating the available

robots to the appropriate tasks places an additional burden

upon the operator. Task allocation becomes increasingly diffi-

cult as the number of robots increases or if the capabilities of

the robots are not known accurately by the operator.

A. Mission Specification

Mission specification, as described in this work, is the

process in which step-by-step instructions are generated to

guide one or more robots to accomplish a set of tasks. An

example of a mission generated for a multi-robot team may

be reconnaissance of an unknown area. Such a mission is com-

posed of many separate tasks. In this case, tasks may include

patrolling a particular area or tracking targets discovered in

the area. These tasks can be further broken down into the

individual actions or behaviors that must be undertaken to

achieve them. In order to fully specify a mission, therefore,

one must detail: (1) the tasks to undertake; (2) the way to

perform the tasks; and (3) any temporal constraints that may

exist between the tasks or behaviors (i.e., the requirement of

finding a target before tracking it).

One method in which mission specification has been con-

ducted in the past has been through traditional programming,

where an expert explicitly programs the robots to perform the

tasks in the proper order using languages such as C or LISP.

Many systems attempt to automate the mission specification

process through the use of planners [1][2]. These approaches,

however, often result in mission plans that are difficult for a

human operator to customize, reuse, or inspect. An alternative

to these approaches is to present the user with a graphical mis-

sion specification interface with which reusable components

at the action, task, or even mission level can be combined or

modified to create the desired mission. MissionLab [3] is one

such toolset used for multi-robot mission specification, while

similar tools exist in other domains (e.g., [4]).

B. Multi-robot Task Allocation

Once a mission has been decomposed into its requisite

tasks, the question of which robot should be responsible for

executing each particular task still remains. Many techniques

for multi-robot task allocation (MRTA) have been examined.

Prior work includes approaches utilizing teammate modeling

[5], distributed constraint matching [1], and others [6]. Gerkey

and Matarić [7] provide a thorough review of several MRTA

frameworks.

MRTA is often framed as an optimization problem in which

some performance metric is minimized or maximized given

a set of tasks and a set of available robots. In the most

general case, generating the optimal mapping is NP-Hard [8].

For many applications, however, the ordering of tasks, the

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

FrD7.1

1-4244-0602-1/07/$20.00 ©2007 IEEE. 4428

availability of robots, and the suitability of a robot for a

particular task are not known. Because of this, recent research

has investigated various market-based approaches to team

allocation with significant success [9][10].

In market-based task allocation, a series of task proposals

corresponding to the tasks available to be allocated are gen-

erated and submitted to all available robots. Each proposal

contains information pertaining to the type of task to be

executed. The available team members accept or reject each

proposal. If the proposal is accepted by a robot, it also submits

a bid for that proposal. This bid provides a self-estimate of

how suitable that robot is to perform the task described in the

proposal. After a specified period of time, the task proposer

evaluates all the submitted bids, and awards one or more of the

bidders the contract. Once the contract has been awarded, the

winning robots are now responsible for that task. This process

is continued until all tasks have been contracted out.

Market-based MRTA provides several advantages over other

mechanisms for task allocation. For instance, market-based

MRTA does not rely on a priori knowledge of tasks, task

ordering, or robot availability to allocate robots. Because of

this, it is highly robust to unanticipated failures and uncertainty

in the environment. While the market-based MRTA does

not guarantee optimal allocation of robots to tasks when

task ordering is known a priori, it does provide provable

bounds on this optimal allocation. In addition, some market-

based task allocation techniques are guaranteed to produce

optimal allocations when task ordering information and robot

reassignment is not available [7].

C. CBR Mission Specification and CNP Task Allocation

This work addresses the complexity of these two tasks

by examining multiple ways by which mission specification

in the form of a case-based reasoning (CBR) planner can

be integrated with contract net protocol (CNP) based task

allocation. We examine two alternative designs in which

to combine these two tools within the MissionLab mission

specification toolkit [11]. In the first design discussed, mission

specification and task allocation are linked together during the

process of mission generation. In the second design, mission

specification instead assists creating structures that support

task allocation while the mission is executing. Both approaches

afford different strengths and weaknesses in terms of usability,

design, and scalability.

II. MISSION SPECIFICATION USING MISSIONLAB

MissionLab is a robotic software toolset that allows a

user to compose and execute a multi-robot mission through

its graphical user interface [3]. In MissionLab, a mission

is described with a graphical representation called an FSA

(finite state acceptor) [12]. In the FSA representation, actions

(behaviors) are denoted with circles while perceptual triggers

(conditions for executing the next action) are denoted with

arrows (Figure 1). MissionLab is designed in such a way that

the user specifies a mission FSA by assembling behaviors and

triggers according to the mission’s requirements. The benefits

Fig. 1. EOD Mission represented via FSA.

of specifying a robot mission using FSAs over conventional

programming methods have been reported in [13]. Once the

FSA-based mission is composed, MissionLab translates it into

C++ code and compiles this code into robot executable files.

A. The CBR Wizard

The CBR Wizard is a software mechanism integrated into

MissionLab to support high-level user assistance during mis-

sion specification [14] as well as to guide users in the the

process of repairing faulty missions [15]. The CBR Wizard

allows the user to specify the mission by retrieving a previous

mission from a case library (Figure 2) instead of directly

composing a mission with FSAs. Once the user has chosen

the various constraints of the mission, the CBR Wizard passes

this information to the CBR planner for mission specification.

Cases are designed and tested by experts using the graphical

editing tool in MissionLab (CfgEdit). When the expert has

generated an exemplar mission, the FSA-based mission code

and indexes for the mission are sent to CBRServer, where it

is saved in the case library.

The process of retrieving a case from the case library is

accomplished by case-based reasoning [16]. More specifically,

in order to retrieve a mission, the user specifies constraints and

preferences for the desired mission through a map-based in-

terface. These constraints and preferences are used as indexes

to collect appropriate cases previously stored by the expert

(Figure 3). The cases retrieved from the case library may not

exactly match the criteria specified by the user. To handle

discrepancies between the retrieved task and the constraints

input by the user, the CBR Wizard may adapt the retrieved

cases to better match the desired mission. For example, if the

previous case only dealt with a mission involving a single

robot while the current scenario involves two robots, the

solution can be duplicated (i.e. be accommodated to the two-

robot mission).

A CBR planner is used for mission specification within

this work in lieu of other alternatives for three reasons. By

using a CBR planner to aid in mission specification, the user

is able to capitalize on libraries of pre-generated, correctly

FrD7.1

4429

Fig. 2. Overview of mission specification using the CBR Wizard. A user
specifies the desired tasks using the map-based interface of MissionLab.
CBRServer retrieves a mission based on the user’s input. The mission is
presented for user inspection, modification, and execution.

CfgEdit mlab

User

Planner

Memory
Manager

Domain
Manager

ballpark

solutions

constraints,

preferences

constraints,

preferences

mission

plan

mission

plan

constraints,

preferences

constraints,

preferences

CBR Wizard

CBR Server

CfgEdit mlab

User

Planner

Memory
Manager

Domain
Manager

ballpark

solutions

constraints,

preferences

constraints,

preferences

mission

plan

mission

plan

constraints,

preferences

constraints,

preferences

CBR Wizard

CBR Server

CfgEdit mlab

User

Planner

Memory
Manager

Domain
Manager

ballpark

solutions

constraints,

preferences

constraints,

preferences

mission

plan

mission

plan

constraints,

preferences

constraints,

preferences

CBR Wizard

CBR Server

Fig. 3. Case retrieval process: After specifying the constraints and preferences
of the tasks for the mission, they are used to retrieve relevant cases from
the case library (memory manager). These retrieved cases are adapted and
presented to the user for inspection or modification.

specified, and successful missions to serve as the basis for

future missions. In addition, by reusing portions of successful

mission plans, the cognitive and computational costs of using

a CBR mission specification system can be significantly lower

than when generating the entire mission by hand or through

other planning methods. Finally, faulty domain knowledge by

a novice user can be less of a problem when using missions

pre-generated by human experts.

III. CONTRACT-NET PROTOCOL BASED TASK

ALLOCATION

The contract-net protocol (CNP) [17] is a distributed nego-

tiation algorithm based on the contract metaphor and often

serves as the core negotiation mechanism of market-based

MRTA approaches [18][19]. The implementation of the CNP

protocol used for MRTA within this work is based upon the

Foundation for Intelligent Physical Agents’ specifcation [20].

In CNP negotiation, calls for proposals are sent to available

resources. These resources in turn accept or reject the pro-

posal. If the proposal is accepted, the resources submit bids

indicating their ability to serve the request. In the context

of multi-robot task allocation, CNP is utilized to generate

mappings between the offers, in this case the tasks required to

accomplish the mission, and the available robotic resources.

More specifically, the call for proposals takes the form of

a description of a task that needs to be executed as well

as any information pertinent to the execution of that task.

The robots (bidders) who listen to the request can reply with

bids indicating their perceived suitability for completing the

task described in the request. The highest bidder(s) are then

assigned to execute the task by the initiator. Figure 4 provides

a high-level overview of the CNP negotiation process.

For example, suppose that the objective of a mission is to

monitor the activity of an enemy vehicle in close proximity.

First, the initiator generates a call for proposals based on the

description of this tracking task. The description may include

the information about the enemy vehicle such as its vehicle

type, position, or velocity, etc. The robots participating in this

auction use this task description to decide if they accept or

reject the proposal. If the robots accept, they use the task

description as well as knowledge of their own state to calculate

a bid for the task. A robot may refuse the proposal if it finds the

task infeasible (e.g., an unmanned underwater vehicle cannot

track a ground vehicle). When the auction period is expired,

the initiator awards the task (contract) to the robot(s) that

submitted the highest bid. The winning robot(s) then executes

the tracking task until either: 1) the task is successfully

completed; 2) the robot determines that completion of the

task is no longer possible; or 3) either the initiator or bidder

requests a reallocation of the task. In the second and third

case, the executing robot will renege on the task (cancel its

contract) and the initiator then attempts to reallocate the task

among the remaining robots.

Contract reneging takes place any time a robot is unable

to or finds it infeasible to continue the task. Such an event

could be the result of a mechanical failure or the discovery of

new robotic assets in the mission area. When a robot reneges

its contract, it informs the task initiator that it is canceling

its contract and provides a reason in the form of the list of

constraints required to continue the task. The initiator then re-

injects the reneged task with the provided constraints for all

the remaining robots. The auction process then procedes as

normal.

While this discussion has largely assumed perfect com-

munication between proposal initiators and bidders, CNP

based approaches can also handle situations where perfect

communication is not present. In these cases, negotiations

are naturally limited to those within communication range of

the initiator and disruptions during the allocation process are

handled though a variety of methods such as message timeouts.

FrD7.1

4430

Initiator

Call for Proposals

Deadline

Refuses

Proposes

Rejects Proposal

Accepts Proposal

Interaction Failed

Interaction Succeeded

Bidder
Initiator

Call for Proposals

Deadline

Refuses

Proposes

Rejects Proposal

Accepts Proposal

Interaction Failed

Interaction Succeeded

Bidder

Fig. 4. Interaction diagram for task auctions and bidder responses.

User Interface

CBR Memory

Sub-Missions

CNP
Task Allocation

Constraints
Mission

CBR

Adaptation

Constraints

User Interface

CBR Memory

Sub-Missions

CNP
Task Allocation

Constraints
Mission

CBR

Adaptation

Constraints

User Interface

CBR Memory

Runtime CNP

Sub-Missions

Constraints

Runtime CNP

Mission

CBR

Adaptation

User Interface

CBR Memory

Runtime CNP

Sub-Missions

Constraints

Runtime CNP

Mission

CBR

Adaptation

CBR & Premission-CNP Integration CBR & Runtime-CNP Integration

Fig. 5. Alternative integration designs: (L) CBR and pre-mission CNP and
(R) CBR and runtime CNP

IV. INTEGRATING CBR AND CNP

This section discusses two alternative designs for integrat-

ing CBR-based mission specification with CNP-based task

allocation (Figure 5). In the first design, CNP provides a

robot-to-task mapping during the CBR Wizard’s case retrieval

process. In the second design, the tasks are assigned by

CNP during the execution of the mission. In this design, the

CBR Wizard retrieves mission plans that support this runtime

task allocation. The design details of both architectures are

discussed below.

A. CBR and Premission-CNP Integration

In the CBR and pre-mission CNP architecture, both CBR

and CNP are used during the mission specification process

(Figure 6). Using this architecture, the mission specification

process proceeds along the following steps:

1) The user specifies global mission parameters.

2) The user selects the tasks that compose the mission and

the task constraints.

3) The data concerning the available robots and desired

tasks are sent to the CBR planner.

4) The tasks are allocated to the robots via CNP within the

CBR planner.

5) The task specifications are retrieved from the CBR

planner.

6) The retrieved task specifications are adapted and as-

signed to the proper robot.

7) The resulting allocations and mission plan are presented

to the user for inspection, modification, and execution.

The specification of global mission parameters and tasks

takes place using the map-based interface of MissionLab

shown in figure 7. The global parameters adjust specific

variables that affect all robots. An example of such a global

variable is MaxVelocity shown in the interface in figure 7. This

particular variable scales the maximum speed with which the

team members execute their mission plans.

Once the global parameters have been selected, the user

selects the component tasks for the mission using the map-

based interface. The tasks used in this work include: mine

removal, target interception, target tracking, target observation,

etc. After selecting a task the user then places the task icon at

the approximate location on the map where they believe the

task will need to be performed. A dialog is then presented to

the user with which they may specify any constraints that may

be necessary for the execution of that task. For example, the

user may want a tracking task to be performed in a stealthy

manner. Such constraints for each task are selected in the task

preference dialog. This process is repeated for each task that

will compose the mission.

Once the user specifies all the tasks and constraints using

the interface, this information (e.g. Figure 8) is sent to the

CBR planner (CBRServer) along with data concerning the

robots that are available for the mission. The CBR planner

uses this data to initiate a series of task allocation auctions

using CNP. For each task input by the user, it initiates one

auction. The call for proposals details the task that must be

performed as well as the constraints the user provided about

the task (location, stealthiness, mobility preferences, etc). Each

of the available robots responds with a message accepting or

rejecting this proposal. If the proposal is accepted, the robots

also sumbit a bid b indicating their self-evaluated fitness for

the task, where 0 < b ≤ 1 . After a short period of time

has passed, the task is assigned to the robot that offered the

highest bid. If no robot offers a bid greater than 0, then task

allocation fails. This process continues until failure or a one-

to-one mapping between robots and tasks has been established.

If failure occurs, the user is alerted and given the option to

either modify the mission or make more robots available for

the mission.

The bid calculation process is performed largely via con-

straint matching (similar to that used by Le Pape [1] to

generate mappings between robots and generated plans). This

process compares the specified task constraints with the robot’s

hardware constraints to determine its suitability for the task.

The use of CNP in the pre-mission system, however, allows

for assignment decisions to be made beyond that of binary

constraint matching. By including heuristics to evaluate bids

FrD7.1

4431

CfgEdit mlab

User

Planner

Memory

Manager

Domain

Manager

ballpark

solutionsmission

plan

mission
plan

constraints,

preferencesCBR Wizard

CNP Server

Manager

CNP Server

Task

Allocation

task & robot

constraints

task-robot

mapping

task & robot

constraints

task-robot

mapping

CfgEdit mlab

User

Planner

Memory

Manager

Domain

Manager

ballpark

solutionsmission

plan

mission
plan

constraints,

preferencesCBR Wizard

CNP Server

Manager

CNP Server

Task

Allocation

task & robot

constraints

task-robot

mapping

task & robot

constraints

task-robot

mapping

Fig. 6. CBR and Premission-CNP integration

Fig. 7. The user interface for the CBR + pre-mission CNP design: Tasks
available for placement on the left. Adjustable global parameters appear in the
upper-right window. Individual task preferences are displayed and adjusted by
clicking on the task location.

based on additional factors such as proximity to the task or

fuel consumption, the mappings have the potential to increase

mission performace through more accurate allocation.

After all the tasks have been assigned to the appropriate

robots, the CBR planner uses this mapping to assemble and

adapt the task specification for each robot as necessary. To

retrieve the appropriate task specification, the CBR planner

searches its case library using the task descriptions input by

the user. The case library is stored as a decision tree, with

each branch in the tree representing the various constraints

that make up the stored cases (Figure 9). At the leaf nodes of

this decision tree, the individual cases generated previously by

the expert are stored. The CBR planner retrieves the mission

plan that most closely resembles the user’s request from the

case library (based on locality within the decision tree) and

performs adaptation on it. In this case, adaptation consists of

modifying the deployment waypoint for the task to match the

user’s input. The adapted task specification is then matched

with the robot that won the contract to execute that task. This

process repeats for each task within the mission.

overlay shore.ovl

cnp CNP_MODE_PREMISSION

global-feature 0 41.00 1 3 "NumberOfRobots"

option 0 "N/A"

global-feature 1 5.00 1 2 "MaxVelocity"

option 0 "N/A"

global-feature 2 0.25 1 1 "Aggressiveness"

option 0 "N/A"

task 2 "InterceptTask"

coordinate 410.88 254.08

feature 0 0.00 4 0 "ENVIRONMENT"

option 0 "AIR"

option 1 "SURFACE"

option 2 "UNDERWATER"

option 3 "GROUND"

feature 1 1.00 2 0 "MISSION_STEALTHINESS"

option 0 "STEALTHY"

option 1 "NOT_STEALTHY"

task-constraints 2 2 "InterceptTask"

task-constraint 0 0.00 4 0 "ENVIRONMENT"

option 0 "AIR"

option 1 "SURFACE"

option 2 "UNDERWATER"

option 3 "GROUND"

task-constraint 1 1.00 2 0 "MISSION_-

STEALTHINESS"

option 0 "STEALTHY"

option 1 "NOT_STEALTHY"

overlay shore.ovl

cnp CNP_MODE_PREMISSION

global-feature 0 41.00 1 3 "NumberOfRobots"

option 0 "N/A"

global-feature 1 5.00 1 2 "MaxVelocity"

option 0 "N/A"

global-feature 2 0.25 1 1 "Aggressiveness"

option 0 "N/A"

task 2 "InterceptTask"

coordinate 410.88 254.08

feature 0 0.00 4 0 "ENVIRONMENT"

option 0 "AIR"

option 1 "SURFACE"

option 2 "UNDERWATER"

option 3 "GROUND"

feature 1 1.00 2 0 "MISSION_STEALTHINESS"

option 0 "STEALTHY"

option 1 "NOT_STEALTHY"

task-constraints 2 2 "InterceptTask"

task-constraint 0 0.00 4 0 "ENVIRONMENT"

option 0 "AIR"

option 1 "SURFACE"

option 2 "UNDERWATER"

option 3 "GROUND"

task-constraint 1 1.00 2 0 "MISSION_-

STEALTHINESS"

option 0 "STEALTHY"

option 1 "NOT_STEALTHY"

Fig. 8. Example of task constraints specified by the user and sent to the
CBRServer.

NMC Observe

1 2

AirSurface

Mission

Type

Stealth

Data

Data

Environment

DataData

NMC Observe

1 2

AirSurface

Mission

Type

Stealth

Data

Data

Environment

DataData

Fig. 9. Decision tree used to store and index cases based on specified
constraints.

Once all task specifications have been retrieved, adapted,

and assigned to the appropriate robot, the resulting mission

plan is visually presented to the user. This mission plan is in

the form of the FSA-based specification used within Mission-

Lab. This final mission plan will contain a one-to-one mapping

between robots and FSA-based task specifications. This final

mission plan may then be inspected, possibly modified, or the

execution rehearsed within the graphical editing environment

and mlab console prior to downloading to the actual robots.

B. CBR and Runtime-CNP Integration

For the design discussed in the previous section, the task al-

location process occurs prior to mission execution (pre-mission

phase). In the second CBR-CNP design, task allocation is

delayed until mission execution. The CBR planner’s role in

this architecture is to produce mission plans that support this

runtime allocation of tasks.

Mission specification within the CBR and runtime CNP

system follows a series of six steps:

1) The user specifies global mission parameters.

2) The user indicates which robots will be available to

be tasked during mission execution along with their

deployment points.

FrD7.1

4432

3) The global parameters and robot selections are sent to

the CBR planner.

4) The robots’ mission specifications are retrieved from the

CBR planner.

5) The retrieved mission specifications are adapted to form

the complete mission specification for each robot.

6) The resulting allocations and mission plan is presented

to the user for inspection, modification, and execution.

As in the case of the CBR and pre-mission CNP design,

the user interacts with the mission specification system via

a map-based interface (Figure 10). The user adjusts global

mission parameters such as team aggressiveness in a manner

similar to the pre-mission system. In addition, however, the

user also selects the type of mission the runtime system will

be performing. Examples of mission types supported by the

system include naval mine countermeasure missions and vessel

interception missions.

After the global parameters have been selected the user

then selects deployment points for the robots that will be used

within this mission. Once a deployment point is selected, the

user chooses which of the available robots they wish to be

deployed at that point. This process is repeated until all robots

that will participate in the mission have had their deployment

locations specified.

Once this is done, the data concerning the global param-

eters and selected robots are then sent to the CBR planner

for mission retrieval. Unlike the CBR and pre-mission CNP

system, however, the runtime system does not perform task

allocation upon case retrieval. It instead retrieves a mission

plan for each robot that implements runtime CNP-based task

allocation such as shown in figure 11. The mission plans

retrieved from the CBR planner’s case memory are adapted

via the augmentation with the selected deployment waypoints.

The resulting FSA mission plans for each robot that will

participate in task execution are identical (except for the

deployment behavior) to each other regardless of the mission

type. This FSA configuration provides the behaviors necessary

to participate in the CNP task allocation process and to execute

any tasks assigned to the robot. The CNP ExecuteWonTask

behavior within this FSA serves as a behavioral assemblage

which implements the execution of any of the possible tasks

that the robot can undertake.

In addition, each robot participating in the mission has

a series of behaviors that monitor its progress during task

execution. If the robot detects that it is unable to continue the

mission or significant changes such as a hardware malfunction

occur, the robot reneges its contract for the task. This results

in the task allocation process reoccurring. Such a behavior acts

to ensure that the appropriate robot performs the task even in

highly dynamic environments.

In addition to these FSA, the CBR planner retrieves one final

mission plan based on the mission-type that the user selected

earlier. This mission plan is for a notional command and

control vehicle and is responsible for monitoring the progress

of the overall mission. It does this through the generation of

a call for proposals when the appropriate conditions are met

Fig. 10. The user interface for the CBR and runtime CNP integration design:
Robot selection dialog is shown on the right side of the screen.

during mission execution (e.g. an enemy vessel is located). The

lead robot generates the call for proposals outlining the new

task to be accomplished (e.g. tracking the enemy vessel) and

then uses this call for proposals to initiate the CNP negotiation

process with the other robots deployed in the mission area. An

example mission plan for the command and control vehicle

participating in a naval mine countermeasure mission can be

seen in figure 12

The key interactions between the command and control

robot and the other deployed robots can be seen in figure 13.

In this figure, the lead robot is labeled as robot 0 and its main

responsibility lies in looking for additional tasks to inject into

the system and monitoring the process of executing tasks. The

deployed robots’ (1...n) responsibility, on the otherhand, lies in

waiting for tasks to become available, bidding on these tasks,

executing tasks, and reporting progress to the command and

control vehicle.

After these mission plans have been retrieved and adapted,

they are presented to the user for inspection, possible modifi-

cation, and execution. It is during mission execution, however,

that task allocation takes place in the CBR and runtime CNP

system.

To further illustrate the runtime allocation process a vessel

interception mission is described. The goal of this mission

is to intercept a naval vessel departing from an arbitrary

port location. In this mission, the leader robot is a notional

command and control vehicle (UAV) flying at high altitude.

This command and control vehicle observes the activity of

the target vessel and tracks its location and speed. The other

robots participating in the mission standby at their deployment

positions as specified by the user during mission specification.

When the target vessel gets sufficiently close to the expected

interception area, the leader robot creates a call for proposals

detailing the interception and passes it to the CNP initiator.

The CNP initiator then broadcasts this call for proposals and

handles the resulting CNP negotiation process (described in

section III) with the deployed robots. The deployed robots

FrD7.1

4433

Fig. 11. FSA generated for a bidder robot. Behaviors within in it are in
support of runtime task allocation.

Fig. 12. FSA generated for leader robot. Its behaviors are largely for
observing environmental state and injecting tasks based on that state.

calculate their bids based on enemy proximity, velocity, etc.

Once the CNP negotiation process has been completed, the

robot submitting the highest bid is assigned the task. The lead

robot continues to monitor the mission area for additional tasks

or mission completion.

The use of CNP in this design is similar to that used by

Gerkey and Matarić’s allocation system MURDOCH [21] [22].

The major difference between the task allocation systems lies

in our use of contract reneging in the CBR and runtime CNP

design. This allows both the task initiator and task executor

to monitor and initiate the reassignment of tasks at anytime.

C. Design Comparison

While both designs use a common set of techniques to

perform mission specification and task allocation, the point

at which the integration occurs results in differing capabil-

ities, strengths, and weaknesses. The CBR and pre-mission

CNP design’s major strength lies in its ability to aid the

user during the mission specification process. Through the

retrieval and adaptation of previously stored missions, the CBR

Wizard reduces the need for the user to create complex FSA

representations of the mission by hand. The task allocation

in this design further eliminates the burden of generating a

Coordinator

Behavior

P
e

rc
e

p
ti
o
n

Activator

Observe

Track

Intercept

Inspect

EOD

Task

CNP Task

Monitor

Sensor

Readings

Robot 1

Robot 2

•••

Robot n

mlab

CNP Initiator

Bidding

Protocols

CNP Bidder

P
e

rc
e

p
ti
o
n

Mission

Monitor

Sensor

Readings

Robot 0

CNP Task

Status

Task

Injection

Coordinator

Behavior

P
e

rc
e

p
ti
o
n

Activator

Observe

Track

Intercept

Inspect

EOD

Task

CNP Task

Monitor

Sensor

Readings

Robot 1

Robot 2

•••

Robot n

mlab

CNP Initiator

Bidding

Protocols

CNP Bidder

P
e

rc
e

p
ti
o
n

Mission

Monitor

Sensor

Readings

Robot 0

CNP Task

Status

Task

Injection

Fig. 13. Architectural framework of the execution phase for the CBR and
runtime CNP design

task-to-robot mapping manually. In addition, using CBR and

CNP in this manner allows the user to inspect and fine-tune

the resulting mission plan prior to execution if necessary.

Finally, the pre-mission design affords preliminary verification

concerning the completion of the mission given the available

resources. All of these components support the design of

complex missions by less sophisticated human operators.

The CBR and pre-mission CNP design is not without

disadvantages, however. In this design the task assignment

for each robot is fixed after mission creation. This may force

a mission to be aborted if a robot performing a vital task

fails, as dynamic reassignment is not supported. In addition,

this design does not permit additional tasks to be injected

opportunistically while the mission is executing, limiting its

effectiveness in highly dynamic scenarios. Finally, the pre-

mission system requires a level of user knowledge concerning

the mission itself to be effective. The more accurate the user’s

knowledge regarding the tasks to be performed and their

location, the more effective the task allocation process will

be. Conversely, a user with inaccurate information concerning

the tasks or locations will result in overall poorer mission

performance.

Unlike the pre-mission design, the CBR and runtime CNP

system delays task allocation until mission execution com-

mences. This delay provides a number of capabilities not

present in the pre-mission design. Dynamic addition of tasks

at runtime is supported directly. In addition, through contract

reneging, the team can react to failures or environmental

changes without compromising the mission’s success. Knowl-

edge concerning the tasks to be performed and their location

is also minimized as the task allocation process provides the

robot-to-task mapping at runtime.

The two major weaknesses inherent in the CBR and runtime

CNP design are in part due to its dynamic nature. The first is its

inability to provide pre-mission verification of the achievability

of a mission. Without additional information concerning the

tasks composing the mission, no guarantees can be given that

FrD7.1

4434

the available robots can accomplish the tasks. In addition, the

runtime design requires relatively frequent amounts of com-

munication throughout the mission. In adverse communication

environments, mission performance may degrade as robots are

unable to receive offers or provide status updates.

V. EVALUATION

The architectures outlined here were evaluated from two

perspectives. The CBR and pre-mission CNP system was

evaluated via a usability analysis while the CBR and runtime

CNP system’s performace was evaluated empirically. We apol-

ogize, but due to space constraints, we can not include the

detailed results in this paper but encourage readers to refer to

the appropriate sources for discussion of the results. A brief

summary of the results follow:

We performed a formal Goals, Operators, and Method, and

Selection rules (GOMS)[23] analysis of the CBR and pre-

mission CNP system along with the base mission specification

system. The results of this analysis show that the CBR and

pre-mission CNP system results in mission creation times

significantly lower then that of the base system, especially

as the number of robots and tasks increase [24].

Our empirical evaluation of the CBR and runtime CNP

system examines the effect of the CNP allocation over a variety

of metrics in naval mine countermeasure missions as well as

target intercept missions. In addition, a series of experiments in

which the CBR and runtime CNP system is compared against a

system in which the ability to dynamically reallocate resources

has been lesioned is examined. Results indicate the CBR and

runtime CNP perform significantly better over a number of

mission metrics when compared to the baseline systems [25].

VI. CONCLUSIONS AND FUTURE WORK

This work presented two different approaches for combining

case-based reasoning mission specification with a contract net

protocol-based task allocation system. In the first, a CBR

planner aids in the generation of complex plans based on task-

level input from the user. A CNP-based task allocation system

then automatically generates mappings from the the available

robots to the tasks during mission specification. The CBR

planner then retrieves and adapts similar cases to generate

mission plans for accomplishing the tasks.

In the second approach, the CBR planner provides mission

FSAs encapsulating behaviors for participating in CNP-based

task allocation as well as the steps for accomplishing these

tasks. It is shown that this design allows for the generation

of missions in which user knowledge requirements are mini-

mized.

Future work will investigate a third possibility for integra-

tion of CBR-based mission specification and CNP-based task

allocation. In this third design, task allocation occurs during

the CBR Wizard’s case generation and storage. This future

investigation will study how the pre-mission and runtime sys-

tems may interoperate to allow for the creation of increasingly

sophisticated multi-robot missions.

ACKNOWLEDGMENT

This research was funded as part of NAVAIR’s Intelligent

Autonomy program.

REFERENCES

[1] C. Le Pape, “A combination of centralized and distributed methods for
multi-agent planning and scheduling,” in Proceedings of ICRA, 1990,
pp. 488–493.

[2] S. Botelho and R. Alami, “Plan-based multi-robot cooperation,” in
Proceedings of the Dagstuhl workshop on plan-based control of robotic

agents, 2001.
[3] D. MacKenzie, R. Arkin, and J. Cameron, “Multiagent mission speci-

fication and execution,” Autonomous Robots, vol. 4, no. 1, pp. 29–52,
1997.

[4] P. Scerri and P. Reed, “The EASE actor development environment,” in
Proceedings of the Workshop of the Swedish AI Society, 1999.

[5] L. Parker, “ALLIANCE: An architecture for fault-tolerant multi-robot
cooperation,” IEEE Transactions of Robotics and Automation, vol. 14,
no. 2, pp. 220–240, 1998.

[6] S. Botelho and R. Alami, “M+: A scheme for multi-robot cooperation
through negotiated task allocation and achievement,” in Proceedings of

ICRA, 1999, pp. 1234–1239.
[7] B. Gerkey and M. Mararic, “A formal analysis and taxonomy of task

allocation in multi-robot systems,” International Journal of Robotics

Research, vol. 23, no. 9, pp. 939–954, 2004.
[8] L. Parker, “Heterogeneous multi-robot cooperation,” Ph.D. dissertation,

MIT, 1994.
[9] R. Zlot, A. Stentz, and M. Dias, “Multi-robot exploration controlled by

a market economy,” in Proceedings of ICRA, 2002, pp. 3016–3023.
[10] M. Dias, R. Zlot, N. Kalra, and A. Stentz, “Market-based multirobot

coordination: A survey and analysis,” Carnegie Mellon University, Tech.
Rep. CMU-RI-TR-05-13, 2005.

[11] MissionLab: User manual for MissionLab version 5.0, Georgia Tech
Mobile Robot Laboratory, 2002.

[12] R. Arkin, Behavior-Based Robotics. Cambridge, Mass.: MIT Press,
1998.

[13] D. MacKenzie and R. Arkin, “Evaluating the usability of robot program-
ming toolsets,” The International Journal of Robotics Research, vol. 17,
no. 4, pp. 381–401, 1998.

[14] Y. Endo, D. MacKenzie, and R. Arkin, “Usability evaluation of high-
level user assistance for robot mission specification,” IEEE Transactions

of Systems, Man, and Cybernetics, vol. 34, pp. 168–180, 2004.
[15] L. Moshinka, Y. Endo, and R. Arkin, “Usability evaluation of an auto-

mated mission repair mechanism for mobile robot mission specification,”
in HRI 2006, 2006.

[16] J. Kolodner and D. Leake, Case-Based Reasoning: Experiences, Lessons,

and Future Directions. AAAI Press, 1996, ch. A Tutorial Introduction
to Case-Based Reasoning, pp. 31–65.

[17] R. Smith, “The contract net protocol: High-level communication and
control in a distributed problem solver,” IEEE Transactions on Comput-

ers, vol. 29, no. 12, 1980.
[18] S. Sariel and T. Balch, “A distributed multi-robot cooperation framework

for real time task achievement,” in Proceedings of DARS 8, 2006.
[19] T. Lemarie, R. Alami, and S. Locroix, “A distributed task allocation

scheme in multi-UAV context,” in Proceedings of ICRA, 2004.
[20] FIPA, “FIPA contract net protocol specification,” Available at

http://www.fipa.org, 2000.
[21] B. Gerkey and M. Mataric, “Sold!: Auction methods for multi-robot

coordination,” IEEE Transactions of Robotics and Automation, vol. 18,
no. 5, pp. 758–768, 2002.

[22] B. Gerkey and M. Matarić, “Pusher-watcher: An approach to fault-
tolerant tightly-coupled robot coordination,” in Proceedings of ICRA,
2002, pp. 464–469.

[23] B. John and D. Kieras, “The GOMS family of user interface analysis
techniques: Comparision and contrast,” ACM Transactions on Computer-

Human Interaction, vol. 3, no. 4, 1996.
[24] A. Wagner, Y. Endo, P. Ulam, and R. Arkin, “Multi-robot user interface

modeling,” in Proceedings of DARS 7, M. Gini and R. Voyles, Eds.
Springer, 2006, pp. 237–248.

[25] P. Ulam, Y. Endo, A. Wagner, and R. Arkin, “Integrated mission
specification and task allocation for robot teams - testing and evaluation,”
Georgia Institute of Technology, Tech. Rep. GIT-GVU-07-02, 2007.

FrD7.1

4435

