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Abstract— Classical path planning does not address many
of the challenges of robotic systems subject to differential
constraints. While there have been many recent efforts to de-
velop motion planning algorithms for systems with differential
constraints (MPD), very little has been said about the existence
of exact algorithms. In other words, the decidability of MPD
problems is still an open question. In this paper, we propose a
partial answer to this question limiting ourselves to special cases
where the trajectory functions of the systems under the finite-
dimensional piecewise-continuous controls have a closed-form
polynomial formulation. We define an abstract formulation
for the MPD problem based on the concept of a control
space. We provide an incremental decision algorithm to answer
the decidability question and present sufficient conditions for
problems to which this algorithm can be applied. Decidability
results for several non trivial MPD problems are presented. For
example, we show that the question of existence of a trajectory
for a Dubin’s car with a polygonal rigid body between two
specified positions and orientations in a polygonal environment
with a fixed and finite number of discontinuities in curvature
is decidable.

I. INTRODUCTION

Motion planning is important in many applications of
robotic systems including manipulation, transportation, man-
ufacturing, surveillance, and medical instrumentation. Be-
cause differential constraints, such as drift and especially
nonholonomy, restrict admissible velocities and accelera-
tions, a collision-free path from classical path planning,
which ignores differential constraints, might be infeasible
and inefficient for systems to follow. Recent motion planning
algorithms start to directly consider differential constraints in
the planning process, such as nonholonomic planning [13]
and kinodynamic planing [7], which are together called
motion planning with differential constraints (MPD) [4],
[14]. While a large amount of practical MPD algorithms
have obtained considerable success, there is very little known
about existence of exact algorithms that decide whether a
solution exists in finite time. The decidability of MPD prob-
lems is unknown, except for 1D [16] and 2D problems [2],
and for a Dubin’s car [8] with the point body moving in
a polygonal environment [9]. These exact algorithms will
improve understanding of the complexity of MPD prob-
lems, which provides a sound reason to pursue practical
incomplete algorithms and helps design of novel verification
algorithms [5] using motion planning techniques.

The concept of the configuration space established a
fundamental abstract formulation for general path planning
problems [15]. Workspace obstacles are mapped into config-
uration space obstacles, denoted as Cobs’s, and a solution is
a collision-free and continuous path between the initial and
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goal configurations (see Fig. 1 left). With this abstraction, a
central scheme in designing exact algorithms is to first con-
struct a finite and exact representation of the collision-free
configuration space, such as cylindrical decomposition [19]
or roadmap [3], and then use a graph search algorithm to
query the existence of a solution.

In the spirit of the configuration space abstraction, this
paper presents an abstract formulation for general MPD
problems using the concept of a control space. In this
formulation (Fig. 1 right), workspace obstacles are mapped
into control space obstacles, denoted as Uobs’s, which are
subsets of the control space including all controls that
drive the system into collision. The goal-reaching set Ugoal

includes all controls which drive the system to the goal state
while ignoring obstacles. A solution is a point inside the
intersection of the collision-free control set U \ Uobs and
Ugoal. Because the control space is universal for all robotic
systems, any MPD problem can be incorporated into this
formulation. The proposed formulation can be considered
as a generalization of the unconventional “configuration
space” specially designed for the Dubin’s car in [9], [10] to
characterize the trajectories connecting two vertices, instead
of the conventional configurations.

In this paper, we design an incremental decision algorithm
to check the existence of a solution for MPD problems
for systems whose finite-dimensional controls are piecewise-
continuous with a fixed and finite number of switches. We
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prove that if the sets in the abstract formulation are semi-
algebraic, then the problem is decidable using the proposed
decision algorithm. While this sufficient condition verifies
decidability of MPD problems with a class of linear sys-
tems [12], we also obtain a new decidability result for a non
trivial MPD problem using similar symbolic computation
techniques in [12], [19], in which the Dubin’s car with a
polygonal rigid body moves between two given configura-
tions in a polygonal environment using up to a fixed and
finite number of control switches.

Besides of exact algorithms, local properties of the systems
and planners, such as integrable differential constraints, small
time local controllability, and topological properties of plan-
ners [20], can also be used to decide specific MPD problems
by reducing their decidability into that of path planning
problems. Semi-decidability results were also provided for
general MPD problems by the resolution complete MPD
algorithms [4], which will find an existing solution in finite
time, but run forever when there is no solution.

The organization of the paper is as follows. In Section
II, the MPD problem is formulated. Section III provides the
abstract formulation and incremental decision algorithm. De-
cidable MPD problems are given in Section IV. Conclusion
and several future directions are given in Section V.

II. PROBLEM FORMULATION

An MPD problem, denoted as M, can be considered as an
extension of the path planning problem, denoted as P , with
differential constraints, denoted as F . Typical MPD includes
both nonholonomic planning and kinodynamic planning.

A path planning problem P has an abstract formulation
(C, Cobs, qinit, qgoal), in which C ⊂ �k is the configuration
space, Cobs ⊂ C includes all configurations in collision,
and qinit, qgoal ∈ C are respectively the initial and goal
configurations. Set Cobs is normally assumed to be semi-
algebraic such that the problem can be decided either by
cylindrical decomposition [19] or roadmap [3]. Set Cfree =
C \ Cobs includes all collision-free configurations. A solution
for P is a continuous path from qinit to qgoal in Cfree.

Differential constraints, denoted as F , are characterized by
the triple (f,X,U), in which f represents a set of Ordinary
Differential Equations (ODEs), ẋ = f(x, u), in which x is
a state in the state space X ⊂ �n, and u is an input in the
input space U ⊂ �m. The trajectory x̃ of the system under
a given control ũ : [0, tũ] → U (tũ varies with ũ) from a
state x0 ∈ X is

x̃(ũ, x0, t) = x0 +
∫ t

0

f (x̃(τ), ũ(τ)) dτ, t ∈ [0, tũ]. (1)

We use U to denote the control space, which includes
all admissible controls for the system. For the purpose
of analysis and computation, a control space is normally
assumed to consist of a class of controls, such as finite-
dimensional continuous functions including sinusoidals and
polynomials, or piecewise-continuous controls. Note that
the general control space is infinite dimensional because a
control can either be a general continuous function or have
an infinite number of switches.

Given an initial state xinit and goal state xgoal, a control ũ
is a solution if x̃(ũ, xinit, tũ) = xgoal and PX

C (x̃(ũ, x0, t)) �∈
Cobs,∀t ∈ [0, tũ], in which PX

C is the projection from state
space X to configuration space C.

An exact algorithm will decide whether such a solution
exists in finite time, i.e., if an exact algorithm exists, then
the problem is decidable. In this paper, we only care about
decidability, and the exact algorithm might not be able to
return a solution if one does exist.

III. ABSTRACT FORMULATION AND AN INCREMENTAL

DECISION ALGORITHM

In this section, we will first present the control space
abstraction for the MPD problem, based on which an in-
cremental decision algorithm is given. Finally, an example
is provided to illustrate the decision process.

A. The control space abstraction
As the configuration space abstraction of path planning

problems maps the workspace obstacles into the configura-
tion space obstacles, we use the control space concept to map
the workspace obstacles into the control space obstacles, or
called collision control set,

Uobs =
{
ũ ∈ U | ∃t ∈ [0, tũ], PX

C (x̃(ũ, xinit, t)) ∈ Cobs

}
.

(2)
We define collision-free control set as Ufree =
U \ Uobs to include all controls which will not
cause collision. The goal-reaching control set,
Ugoal = {ũ ∈ U | x̃(ũ, xinit, tũ) = xgoal}, includes all
the controls that drive the system to xgoal while ignoring
the workspace obstacles. Thus, the MPD problem has the
following abstract formulation (U ,Uobs,Ugoal). A solution
is a control ũ ∈ Ufree ∩ Ugoal. An exact algorithm will
decide whether Ufree ∩ Ugoal is empty in finite time.

B. An incremental decision algorithm
Our decision algorithm for MPD problems depends on the

following three assumptions:
1. Semi-algebraic Cobs Let a configuration be parameter-

ized by q ∈ �k. Set Cobs is the following semi-algebraic
set:

{q | ∨i=1,2,··· ,no
(∧m=1,2,··· ,ne

Ai,m(q) ≤ 0)}, (3)

in which ∨ and ∧ are respectively the standard logical “or”
and “and” operators, {Am,i(q)} are polynomial functions 1

of q, and no and ne are constant positive integers. For the
details about computation of Cobs and semi-algebraic sets,
please refer to [6], [14].

2. Finite-dimensional control space Generally, the control
space can be formulated as a semigroup 2 generated from
a finite-dimensional control space generator set, denoted
as Ū [4], which includes only continuous controls. The
semigroup operation ◦ for any two controls ũ1 : [0, t1] → U
and ũ2 : [0, t2] → U is simply a “concatenation” and
formally defined as

(ũ1 ◦ ũ2)(t) =
{

ũ1(t) t ∈ [0, t1)
ũ2(t − t1) t ∈ [t1, t1 + t2].

(4)

The k-order expanded control set is defined as

Ûk = {ũ1 ◦ ũ2 ◦ · · · ◦ ũk | ũi ∈ Ū for i = 1, 2, · · · , k}. (5)

1As the standard assumption to ensure exact computation in the computer,
we also require in this paper that the coefficients of all polynomials defining
the semi-algebraic sets are algebraic numbers.

2A semigroup is a set equipped with an operation whose elements satisfy
closure and associativity properties.
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IDA(M)
1 U0

free = ∅
2 k = 1
3 while (k ≤ K)

4 Construct Uk
obs from Uk−1

free and Ū
5 Construct Uk

free = (Uk−1
free ◦ Ū) \ Uk

obs

6 if Uk
free = ∅

7 Return and report that there is no solution

8 Construct Uk
goal

9 if Uk
free ∩ Uk

goal �= ∅
10 Return and report that there exists a solution
11 k = k + 1
12 Report that there is no solution

Fig. 2. The incremental decision algorithm (IDA) for MPD problems

The k-order generated control set is defined as Ūk =
∪k

i=1Û i. The general control space is defined as U = Ū∞.
If a control ũ in the generator Ū is parameterized by l <
∞ real numbers c1, c2, · · · , cl, then the general control
space is infinite dimensional because of the infinite number
of switches. To ensure finite computation time for exact
algorithms, the control space in this paper only consists of
piecewise-continuous controls with up to K pieces, that is,
U = ŪK , which is K × l dimensional.

3. Closed-form trajectory functions We assume that the
integral in (1), i.e., the trajectory function x̃, is a closed-
form function of control parameters.

Remark: If the trajectory (1) is not closed-form, then its
numerical computation is necessary and exact representa-
tions of Ufree and Ugoal are not available such that exact
algorithms based on the control space abstraction in Section
III-A do not exist. This remark highlights the importance of
motion equation and control space for obtaining decidable
problems. The combination of motion equation and control
space must generate a closed-form trajectory function, which
might be one of the reasons why exact algorithms for MPD
problems with most robotic systems are unknown because
closed-form integration only exists for few classes of simple
functions.

Before describing the decision algorithm, let us first intro-
duce the following notations. We use set

Uk
free = {ũ ∈ Ûk | ũ causes no collision with Cobs} (6)

to denote all collision-free controls in Ûk. Set

Uk
obs = {ũ ∈ Ûk | ũ = ũ′ ◦ ũ′′, ũ′ ∈ Uk−1

free, ũ
′′ ∈ Ū ,

ũ causes collision with Cobs} (7)

denotes controls in Ûk whose first k−1 pieces are collision-
free, but the last piece causes collision. Set

Uk
goal = {ũ ∈ Ûk | x̃(ũ, xinit, tũ) = xgoal} (8)

includes all controls in Ûk which lead the system to xgoal.
It is easy to see in Fig. 3 that

Uk
free = (Uk−1

free ◦ Ū) \ Uk
obs, (9)

Uobs =
⋃

k=1,2,··· ,K
Uk

obs,Ufree =
⋃

k=1,2,··· ,K
Uk

free, (10)

k
obsU

1k
freeU

xinit

xgoal
k
goalU

(1,1)

(3,3)

(-1,-1)

(5,5)

(0,0)

(4,4)

k
freeU

Fig. 3. An MPD problem for the Dubin’s car

Ugoal =
⋃

k=1,2,··· ,K
Uk

goal. (11)

The relationship between Uk
free, Uk

obs, Uk
goal, and Ū in

(7), (8), and (9) naturally leads to an incremental decision
algorithm, denoted as IDA, for a given MPD problem M.
The IDA iteratively constructs Uk

obs, Uk
free, and Uk

goal and
checks the existence of a solution (see Fig. 2). Note that
Steps 6 and 7 in Fig. 2 are optional, but might help the
algorithm to terminate earlier before reaching iteration K.

C. An example of the IDA computation
The MPD problem in Fig. 3 for the Dubin’s car is used to

illustrate the IDA. The initial and goal states are respectively
(0, 0, π/2) and (4, 4, π/2). An obstacle (1, 3) × (1, 3) is in
the workspace (−1, 5) × (−1, 5). The car is assumed to be
a point to simplify Cobs. The differential constraint is given
in the following ODEs: ẋ = cos(θ), ẏ = sin(θ), θ̇ = w,
in which w ∈ {−1, 0, 1} is the turning rate of the car. The
control space consists of piecewise-constant controls with
up to three pieces (two switches). Each constant piece of a
control has turning rate w and duration t, and is represented
by (w, t). If w �= 0, then |w|t is in (0, 2π) to avoid the car to
stay static or come back to the starting configuration when
it moves around a circle; otherwise, duration t is in (0,∞).
Therefore, the generator set Ū is

{(w �= 0 ∧ |w|t ∈ (0, 2π)) ∨ (w = 0 ∧ t > 0)}. (12)

Trajectories of the car under a control with w �= 0 or
w = 0 from state (x0, y0, θ0) are respectively:

x(w, t) = (sin(θ0 + wt) − sin(θ0))/w + x0

y(w, t) = (cos(θ0) − cos(θ0 + wt))/w + y0

θ(w, t) = θ0 + wt,
(13)

x(w, t) = cos(θ0)t + x0

y(w, t) = sin(θ0)t + y0

θ(w, t) = θ0.
(14)

The following gives the first iteration computation of the
IDA in Fig. 2. The other iterations are computed similarly.

Step 4 in Fig. 2: Constructing U1
obs According to (13) and

(14), a control in Ū will lead to collision if it is in:

U1
obs = {(w, t) | ∃τ ∈ (0, t], (1 ≤ x(w, τ) ≤ 3 ∧

1 ≤ y(w, τ) ≤ 3) ∨ x(w, τ) ≤ −1 ∨
x(w, τ) ≥ 5 ∨ y(w, τ) ≤ −1 ∨ y(w, τ) ≥ 5}.

(15)
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Step 5: Constructing U1
free According to (9), because

U0
free = ∅, we have U1

free = Ū \ U1
obs.

Step 6: Checking whether U1
free is empty By manually

checking, we know that U1
free is not empty.

Step 8: Constructing U1
goal According to (13) and (14),

U1
goal = {(w, t) | x(w, t) = 4, y(w, t) = 4, θ(w, t) = π/2}.

(16)
Step 9: Checking whether U1

free∩U1
goal is empty It is easy

to see that U1
goal is empty such that there is no solution at

this iteration. The computation will go to Step 4.
For this simple example, we can manually complete the

above computation. However, for general MPD problems,
as the trajectory function and geometry of the workspace
become complicated and the number of control switches in-
creases, computation in Steps 6 and 9 might not computable
with existing tools such that decidability of the problem is
unknown. Noticing that Step 6 is optional, the following
theorem gives the sufficient condition for decidability of an
MPD problem.

Theorem 1: If Step 9 of the IDA in Fig. 2 can be
computed in finite time for a given MPD problem, then the
existence of a solution for the problem can be decided by
the IDA, i.e., the MPD problem is decidable.

Proof: Firstly, the IDA will terminate in finite time
because it only has a finite number of iterations and each
iteration costs finite time. Secondly, (10) and (11) show that
the algorithm will report whether a solution exists.
Note that Theorem 1 does not restrict us to use a special
computational method. However, no matter which method
is used, if Step 9 can be computed in finite time, then the
problem is always decidable.

IV. DECIDABLE MPD PROBLEMS WITH QUANTIFIER

ELIMINATION

Computation in Step 9 in Fig. 2 can be achieved through
evaluation of the following quantified formula:

∃ũ, ũ ∈ Uk
free ∩ Uk

goal. (17)

By Tarski’s theorem [21], if both Ufree and Ugoal are semi-
algebraic sets, then quantifier elimination will be able to
compute (17) (i.e., Step 9) in finite time. Therefore, we have
the following result.

Theorem 2: If both Ufree and Ugoal of a given MPD
problem are semi-algebraic sets, then the MPD problem is
decidable.

The following two types of MPD problems satisfy these
conditions. The first one is the MPD problems for a class
of linear systems [12], [11]. The second one is an MPD
problem for the Dubin’s car with a polygonal rigid body
moving in a polygonal environment. The key to show the
decidability of these problems is to find nontrivial transfor-
mations to construct a closed-form polynomial formulation
of the trajectory functions of these systems under the given
control space, such that Ufree and Ugoal can be shown to be
semi-algebraic.

A. Decidable MPD problems with a class of linear systems

MPD problems have close relation with reachability prob-
lems. MPD problems compute collision-free trajectories from

the initial states to the goal states, while reachability prob-
lems compute all states reachable from initial state sets. If
a reachability problem is decidable, then the corresponding
MPD problem is decidable. The reachability results in [12]
have been used to design exact planning algorithms and
show the MPD problems with a class of linear systems are
decidable [11]. It can be verified that Ufree and Ugoal for
these problems are semi-algebraic, and the results in [11] are
shown in Theorem 3 as examples of applications of Theorem
2.

Assume that motion equation of the robotic system is:

ẋ = Ax + Bu, (18)

which includes many robotic systems admitting feedback
linearizable controls. The control space generator set is of
the following form

Ū = {ũ = [ũ1, · · · , ũm] | ũj =
∑r

l=1 bjlpl(t),
Φb(bjl), 1 ≤ j ≤ m, 1 ≤ l ≤ r}, (19)

in which Φb(bjl) is a semi-algebraic set, and {pl(t)} are
some basis functions. The results in [12] are given as follow.

Theorem 3: [11] A linear system has motion equation (18)
and control space generator (19). Let Λ be the spectrum
of matrix A in (18). The reachability problem of the linear
system is decidable if

1) A is nilpotent, and the basis functions are of the form
pl(t) = tl, or

2) A is diagonalizable with real, rational eigenvalues, and
the basis functions are of the form pl(t) = eμlt with
μl �∈ Λ, or

3) A is diagonalizable, has purely imaginary eigenvalues
of the form ir with r be rational number, and the basis
functions are of form pl(t) = sin(μlt) or pl(t) =
cos(μlt), with μl �∈ Λ.

It can be verified that if the linear system satisfies one of
the above conditions, then its trajectory will be transformed
into a closed-form polynomial function (see [12] for details).
Therefore, the corresponding Uobs, Ufree, and Ugoal will be
semi-algebraic. As a special case of [12], it can also be shown
that Uobs, Ufree, and Ugoal of the problem in [22] are also
semi-algebraic because the trajectory is piecewise-linear.

B. A decidable MPD problem for the Dubin’s car
The MPD problem for the Dubin’s car with a point body

moving in a polygonal environment has been shown to
be decidable [9], and an approximate algorithm was given
in [10]. In this section, we will use the proposed IDA to
give a more general decidable result for MPD problems in
Theorem 4, in which the Dubin’s car has a polygonal rigid
body and moves in a polygonal environment. Furthermore,
Corollary 2 shows that the results in [9], [10] can be also
obtained from Theorem 4.

Theorem 4: If the Dubin’s car with a polygonal rigid body
moves in a polygonal environment and its control space is
U = ŪK for a fixed positive integer K and generator Ū in
(12), then the MPD problem for this car is decidable.

Proof: Semi-algebraic configuration space obstacles It
is easy to check that parameterizing configuration (x, y, θ) of
a planar polygonal rigid body as q = (x, y, α = cos θ, β =
sin θ) with α2 + β2 = 1 will make the configuration space
obstacles be semi-algebraic sets in form (3).
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Transforming trajectory functions into closed-form poly-
nomials With respect to the above configuration space pa-
rameterization, trajectories (13) and (14) for w �= 0 and
w = 0 from the starting state q0 = (x0, y0, α0 = cos θ0, β0 =
sin θ0) are respectively transformed into

x(w, t) = (β0 cos(wt) + α0 sin(wt) − β0)/w + x0

y(w, t) = (α0 − α0 cos(wt) + β0 sin(wt))/w + y0

α(w, t) = α0 cos(wt) − β0 sin(wt)
β(w, t) = β0 cos(wt) + α0 sin(wt),

(20)
x(w, t) = cos(θ0)t + x0 = α0t + x0

y(w, t) = sin(θ0)t + y0 = β0t + y0

α(w, t) = cos(θ0) = α0

β(w, t) = sin(θ0) = β0.

(21)

It is easy to see that (21) is a polynomial function of time t
and the starting state q0.

Under the following substitution

l = wt, η = 1/w, z1 = cos(l), z2 = sin(l), z2
1 + z2

2 = 1,
(22)

the control (w �= 0, t) with |wt| ∈ (0, 2π) has two equivalent
parameterizations (l, η) and (z1, z2, η) such that (20) can be
written in the following forms

x(l, η) = (β0 cos(l) + α0 sin(l) − β0)η + x0

y(l, η) = (α0 − α0 cos(l) + β0 sin(l))η + y0

α(l, η) = α0 cos(l) − β0 sin(l)
β(l, η) = β0 cos(l) + α0 sin(l), ,

(23)

x(z1, z2, η) = (β0z1 + α0z2 − β0)η + x0

y(z1, z2, η) = (α0 − α0z1 + β0z2)η + y0

α(z1, z2, η) = α0z1 − β0z2

β(z1, z2, η) = β0z1 + α0z2.

(24)

It is easy to see that the second form is a polynomial function
of z1, z2, η, and the starting state q0. It can be further checked
that the trajectory function for a piecewise-constant control
with k < ∞ switches is also a closed-form polynomial.

Construction of semi-algebraic U1
obs, U1

free, and U1
goal

Because trajectory functions are different for w = 0 and w �=
0, we will construct their semi-algebraic sets respectively.

The set of constant controls with w = 0 and duration t is

Ūw=0 = {(0, t) | t ∈ (0,∞)}. (25)

The collision, collision-free, and goal-reaching control set
are respectively

U1
obs,w=0 = {(0, t) | ∃τ ∈ (0, t], x̃(0, τ) ∈ Cobs}, (26)

U1
free,w=0 = {(0, t) | ∀τ ∈ (0, t], x̃(0, τ) �∈ Cobs}, (27)

U1
goal,w=0 = {t | x̃(t) = qgoal}. (28)

Because x̃(w, t) is a polynomial trajectory function (see (21))
from xinit and Cobs is semi-algebraic, all these three sets are
semi-algebraic by Tarski’s theorem.

The set of controls with w �= 0 and duration t is
parameterized as

Ūw �=0 = {(w, t) | t ∈ (0,∞), |w|t ∈ (0, 2π)}. (29)

The collision control set is

U1
obs,w �=0 = {(w, t) ∈ Ūw �=0 | ∃τ ∈ (0, t], x̃(w, τ) ∈ Cobs},

(30)

in which x̃(w, t) represents the trajectory function (13) from
xinit. With the first two substitutions in (22), set U1

obs,w �=0
also has the following equivalent parameterizations:

U1
obs,w �=0 = {(l, η) | |l| ∈ (0, 2π),∃τ ∈ (0, l], x̃(τ, η) ∈ Cobs},

(31)
in which x̃(l, η) is the trajectory function in (23). In the
above, we have shown that with substitution (22), (23) can
be transformed into polynomial functions (24). However,
because the sinusoidal functions are not bijections, simply
applying the last three substitutions in (22) on (31) will not
obtain an equivalent parameterization of (31).

Instead, we reparameterize a control with w �= 0 and
duration t with four consecutive constant controls, each
of which has the same turning rate w and durations ti
with |w|ti ∈ (0, π/2) for i = 1, 2, 3 and 4. With the
reparameterization, the control set (29) is changed into

Ūw �=0 = {(w, t1, t2, t3, t4) | ti > 0, |w|ti ∈ (0, π/2)}
= Ūw �=0, π

2
◦ · · · ◦ Ūw �=0, π

2
= Û4

w �=0, π
2
,

(32)
in which

Ūw �=0, π
2

= {(w, t) | t ∈ (0,∞), |w|t ∈ (0, π/2)}
= {(l, η) | |l| ∈ (0, π/2)}(with (22))
= {(z1, z2, η) | z2

1 + z2
2 = 1, z1, z2 ∈ (0, 1)}.

(33)
Note that in (33), all three representations of Ūw �=0, π

2
are

equivalent because the sinusoidal functions are bijections in
the restricted domain (0, π/2).

With the above reparameterization, if the collision,
collision-free, and goal-reaching control sets in Ûk

w �=0, π
2

for

k = 1, 2, 3, and 4 are semi-algebraic, then so are U1
obs,w �=0,

U1
free,w �=0, and U1

goal,w �=0 according to (10) and (11).

The collision control set in Û1
w �=0, π

2
= Ūw �=0, π

2
is

U1
obs,w �=0,t1

= {(z1, z2, η) | z2
1 + z2

2 = 1, z1, z2 ∈ (0, 1),
∃ τ1 ∈ [z1, 1), τ2 ∈ (0, z2], x̃(τ1, τ2, η) ∈ Cobs}.

(34)
It is easy to check that set (34) is semi-algebraic because
x̃(τ1, τ2, η) is a closed-form polynomial function (see (24)).
Similarly, the collision-free control set U1

free,w �=0,t1
and

goal-reaching set U1
goal,w �=0,t1

are also semi-algebraic.

According to (7), the collision control set in Û2
w �=0, π

2
is

U1
obs,w �=0,t1,t2

= {(k1, k2, z1, z2, η) | z2
1 + z2

2 = 1,

z1, z2 ∈ (0, 1), (k1, k2, η) ∈ U1
free,w �=0,t1

∃ τ1 ∈ [z1, 1),
τ2 ∈ (0, z2], x̃k1,k2(τ1, τ2, η) ∈ Cobs},

(35)
in which x̃k1,k2(τ1, τ2, η) denotes the trajectory under the
control with duration t2 from the final state of the control
with duration t1. Because x̃k1,k2(τ1, τ2, η) is a polynomial
function and U1

free,w �=0,t1
is semi-algebraic, U1

obs,w �=0,t1,t2
is semi-algebraic, and therefore, so are U1

free,w �=0,t1,t2
and

U1
goal,w �=0,t1,t2

. By induction, we can show that U1
obs,w �=0,

U1
free,w �=0, and U1

goal,w �=0 are semi-algebraic.

Construction of semi-algebraic Uk
obs, Uk

free, and Uk
goal

Because Uk
obs, Uk

free, and Uk
goal are constructed from Ū and

semi-algebraic Uk−1
free, it is easy to check that these sets are

all semi-algebraic with the above techniques. Therefore, the
MPD problem for the Dubin’s car is decidable.
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Corollary 1: The above MPD problem for the Dubin’s
car with its turning rate in a continuous set [−1, 1] is also
decidable by the IDA.

Proof: The above proof does not require that the turing
rate has to be chosen from a discrete set.

Corollary 2: The MPD problem for the Dubin’s car with
a point body moving in a polygonal environment (without
a bound on the number of control switches) is decidable by
the IDA in Fig. 2.

Proof: As shown in [9], [10], the number of switches
in all solutions is bounded by kn2

v for some positive constant
k, in which nv is the number of vertices of the polygonal
environment. Therefore, the problem is decidable by the
proposed IDA if we choose the control space to include
piecewise-constant controls with up to kn2

v switches.

V. CONCLUSION AND FUTURE RESEARCH

In this paper, we attempt to answer the decidability
question for motion planning with differential constraints
(MPD). To this end we proposed a control space abstraction
for MPD problems and developed an incremental decision
algorithm that can be used to answer this question. We show
that this decidability question can be answered for a class of
linear systems and for the Dubin’s car with a polygonal rigid
body moving in a polygonal environment with a fixed (finite)
number of curvature discontinuities. While the decision
algorithm involves the solution to a quantifier elimination
problem, which is computational expensive, our main goal is
to provide a theoretical framework to address the decidability
question.

There are many directions for future research. First, com-
plexity of the IDA algorithm is worth investigating. Also,
this paper only considers MPD problems for a narrow class
of systems for which the control space is finite-dimensional.
However, the general control space is a semigroup with an
infinite number of switches, and therefore is infinite dimen-
sional. A natural question is how to ensure that no solution
will exist in the infinite-dimensional control space of a given
MPD problem if there is no solution in a finite-dimensional
control space. The answer to this question directly affects
decidability checking for more general MPD problems.

Another area of investigation concerns sampling-based
planning algorithms, which use a finite number of sample
points to approximate solutions, and have had considerable
success in the last two decades. A large amount of research
has been done on sampling techniques in the state space. It is
expected that research on sampling techniques in the control
space will also improve design and analysis of MPD algo-
rithms [1], [4], [14], [17], [18]. For example, the structure
of the reachable set of quantized control systems under a
given discrete set of sample controls [1] leads to an efficient
MPD algorithm in [17]. Research on the relationship between
control space sampling dispersion and trajectory variation
leads to sufficient conditions for resolution complete MPD
algorithms [4], [14].

As we compare Theorems 1 and 2, requirements for semi-
algebraic sets in Theorem 2 come directly from the limitation
of the existing computational tool. To be able to decide
more general MPD problems using the IDA in Fig. 2, new
computational tools are necessary.
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