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Abstract— Distributed motion planning of multiple agents
raises fundamental and novel problems in control theory and
robotics. Recently, one such great challenge has been the
development of motion planning algorithms that dynamically
assign targets or destinations to multiple homogeneous agents,
not relying on any a priori assignment of agents to destinations.
In this paper, we address this challenge using two novel
ideas. First, we develop distributed multi-destination potential
fields able to drive every agent to any available destination
for almost all initial conditions. Second, we propose sensor-
based coordination protocols that ensure that distinct agents
are assigned to distinct destinations. Integration of the overall
system results in a distributed, multi-agent, hybrid system for
which we show that the mutual exclusion property of the
final assignment is guaranteed for almost all initial conditions.
Moreover, we show that our dynamic assignment algorithm
converges after exploring at most a polynomial number of
assignments, dramatically reducing the combinatorial nature
of purely discrete assignment problems. Our scalable approach
is illustrated with nontrivial computer simulations.

I. INTRODUCTION

Given any multi-agent motion planning task, where the

agents have to reach a desired configuration from any initial

configuration [1], the assignment problem consists of deter-

mining an assignment between the agents and the destina-

tions. If no a priori assignment information is provided, then

the assignment has to be determined on-line. Moreover, if

only local sensing information is available, then the resulting

control framework is fully distributed.

Assignment problems are fundamental in combinatorial

optimization and, roughly, consist of finding a minimum

weight matching in a weighted bipartite graph. They arise

frequently in various research areas, as diverse as operations

research, computer vision and distributed robotics − forma-

tion stabilization and consensus seeking − where graphs are

recently emerging as a natural mathematical description for

capturing interconnection topology [2] − [12]. Depending

on the form of the cost function, assignment problems can

be classified as linear or quadratic. Optimal solutions to the

linear assignment problem can be computed in polynomial

time using the Hungarian algorithm [13], while the quadratic

assignment problem is NP-hard [14] and suboptimal solu-

tions are achieved by means of various relaxations [15], [16].

In distributed robotics, approaches to the assignment prob-

lem can be either on-line, if the assignment is determined dy-

namically, or off-line, if an assignment is computed a priori.
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An on-line approach to the assignment problem is proposed

in [17], where the space of permutation invariant multi-robot

formations is represented using complex polynomials whose

roots correspond to the unassigned configurations of the

robots in the formation. Since, the polynomial coefficients

are invariant under permutation of the roots, the represen-

tation of the formation is invariant with respect to different

robot-configuration assignments. The proposed approach is

open loop and centralized, since it requires global knowledge

of the environment. On the other hand, an off-line approach

is proposed in [18], where the authors develop a polynomial

time algorithm that computes a suboptimal assignment be-

tween agents and destinations based on a “minimum distance

to the goal” policy. Any navigation strategy can then be used

to drive the agents to their destinations.

In this paper we propose a fully distributed control

framework that provides an on-line solution to the multi-

agent assignment problem. Assuming that all agents have

initially knowledge of all available destinations, the main

idea behind our approach is to let every agent explore a

sequence of destinations and eventually be assigned to the

first one that is available. No communication among the

agents is assumed, hence the requirement that no two agents

may be assigned to the same destination is ensured by

sensor-based coordination protocols. On the other hand, the

sequence of destinations to be explored by each agent is

determined dynamically through provably correct distributed

multi-destination potential fields that can drive every agent

from almost all initial configurations to any destination in the

configuration space. Integration of the overall system results

in a distributed multi-agent hybrid system that is shown to

almost always converge to an assignment having the mutual

exclusion property and have at most polynomial complexity,

despite the exponential growth of the number of assignments

with respect to the number of agents. The efficiency of

our scalable approach is finally illustrated through nontrivial

computer simulations.

The rest of this paper is organized as follows. In Section II

we develop a general framework for the dynamic assignment

problem. In Section III, we state the modeling assumptions

and define the hybrid automata that consist the agents’

models. In Section IV, we construct the aforementioned

multi-destination potential fields and study their convergence

properties. The integrated system is studied in Section V,

where results about its complexity and equilibrium modes

are also discussed. Finally, in Section VI, we state and verify

through computer simulations, nontrivial assignment tasks

that illustrate the efficiency of our approach.
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Fig. 1. Multi-agent motion planning for n = 3 agents and m = 3
destinations resulting in one out of 6 possible assignments.

II. PROBLEM FORMULATION

Consider n point agents in a 2-dimensional space R
2 and

denote by xi(t) ∈ R
2 the coordinates of agent i at time t.

We assume kinematic models for the agents and so,

ẋi(t) = ui(t) ∀ i = 1, . . . , n (1)

where ui(t) is the control vector taking values in R
2.

Consider, further, m ≥ n destinations in R
2 that the agents

have to occupy and let I0 = {1, . . . ,m} denote the index set

corresponding to a fixed labeling of these destinations. We

assume that each destination k ∈ I0 is uniquely associated

to a coordinate vector dk ∈ R
2 through the injective map,

dest : I0 → R
2 with dest(k) := dk, ∀ k ∈ I0 (2)

To simplify notation, we hereafter write dk to refer to the

injection dest(k). The system of agents and destinations de-

scribed above, gives rise to the multi-agent motion planning

problem, which we define as follows.

Definition 2.1 (Multi-Agent Motion Planning): Given a

set of n identical agents and m ≥ n destinations, derive

control laws that drive each agent to a distinct destination.

Implicit in the motion planning problem defined above,

is the assignment problem, namely, which of the
(

m
n

)

n!
possible assignments between agents and destinations should

system (1) be driven to. Given that the agents are “identical”

we consider any assignment equally desirable (Figure 1).

A popular approach is to decouple the assignment and

navigation subproblems in Definition 2.1, i.e., determine first

an assignment between agents and destinations, which can

be either random or optimal, based on a “minimum distance

to the goal” policy [16], [18], and then design controllers

that drive each agent to its destination [1]. Such approaches

result in centralized and off-line control frameworks since,

although navigation can be decentralized, an off-line central-

ized assignment decision needs to be made first. In this paper

we propose a dynamic and completely distributed solution to

the aforementioned problem. In particular, we assume that

each agent has only knowledge of its available destinations,

while the assignment decision is embedded in its controller

and relies on local sensing information. We therefore, address

the following motion planning problem.

Problem 1 (Dynamic Assignment): Given a set of n iden-

tical agents, m ≥ n destinations and no a priori assignment

information, derive distributed control laws that drive every

agent i, from any initial configuration xi(t0), to a distinct

destination k ∈ I0.

δ

dk

δ

dl

xi(t0)

t1

t3

k, l ∈ Ii(t0) Ii(t2) := Ii(t2)\{k} Ii(t3) := {l}

xj(t0)

Ij(t1) := {k}

t2

k ∈ Ij(t0)

Fig. 2. Example of sensor-based coordination.

The main idea behind our approach to Problem 1 is to let

every agent explore a sequence of destinations and eventually

be assigned to the first one that is available. Implicit in this

task is the mutual exclusion property of the final assignment,

i.e., that no two agents can occupy the same destination.

This property is guaranteed by sensor-based coordination

protocols, that are developed in the following section, and

enable the agents to sense whether a destination is taken or

not. Then, in Section IV, multi-destination potential fields

are developed that dynamically determine a sequence of

destinations to be explored, while navigating the agents to

each one of these destinations.

III. DISTRIBUTED COORDINATION

Let I(t) and Ic(t) denote the index sets of available

and taken destinations at time t ≥ t0, respectively. Clearly,

I(t0) = I0, Ic(t0) = ∅ and I(t)∩Ic(t) = ∅, I(t)∪Ic(t) =
I0 for all t ≥ t0. In a distributed setting, however, where the

agents do not have access to the system’s global variables,

we require that every agent i is equipped with its own set of

available destinations, denoted by Ii(t), such that initially

Ii(t0) = I0. Moreover, we assume that no agent i has

knowledge of the positions or the destination sets Ij(t), j 6= i

of the other agents. With the above notation, we now state

the assumptions for our model.

Assumptions 3.1: Let Br(x) = {y ∈ R
2 | ‖y − x‖2 < r}

denote an open ball of radius r > 0 centered at x ∈ R
2. For

every agent i = 1, . . . , n we assume that, for all time t,

(a) it can claim an available destination k ∈ I(t), if and

only if k ∈ Ii(t), |Ii(t)| > 1 and xi(t) ∈ Bδ(dk),1

(b) there is a controller ui(xi(t), Ii) that, for any fixed index

set Ii, can drive it to any destination in Ii.

(c) δ > 0 is such that Bδ(dk)∩Bδ(dl) = ∅ for all k, l ∈ I0.

We call 2δ > 0 the sensing range of the agents. Assump-

tion 3.1(a) implies that a necessary and sufficient condition

for agent i to be assigned to destination k is that xi(t) ∈
Bδ(dk) and destination k is free, i.e., k ∈ I(t). Clearly, a

sensing range 2δ or larger allows agent i to know whether

there exists another agent j 6= i with xj(t) ∈ Bδ(dk), i.e.,

whether destination k is taken or free. Assumption 3.1(b), on

the other hand, says that every agent is capable of navigating

to any of its available destinations. Finally, Assumption

3.1(c) combined with Assumption 3.1(a) guarantees that each

agent can only claim one destination at a time. The following

example describes the main idea of our approach (Figure 2).

1We denote by |A| the cardinality of the set A.
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Example 3.2: Consider agents i and j initially located at

xi(t0) and xj(t0) with available destination sets Ii(t0) and

Ij(t0) respectively. Consider further destination points dk

and dl such that, k, l ∈ Ii(t0) and k ∈ Ij(t0). Let time

t1 > t0 be such that xj(t1) ∈ Bδ(dk) and assume that

destination k is free. Then, agent j is assigned to destination

k by setting Ij(t1) := {k} and destination k is labeled

taken. Let time t2 > t1 be such that xi(t2) ∈ Bδ(dk). Since

destination k is already taken, agent i removes it from its

available destinations and so Ii(t2) := Ii(t2)\{k}. Under

the control ui(xi(t), Ii(t2)) it navigates towards destination

l, which is assumed to be free.

Having motivated our approach with Example 3.2, we can

now formally define the distributed coordination scheme for

the dynamic assignment problem. The proposed coordination

scheme consists of hybrid models for both the agents and the

destinations, which interact with each other and result in the

desired behavior of the overall system, which is shown in

Section V to have the desired liveness and safety properties.

A. Modeling the Agents and Destinations

In view of Example 3.2, we model every agent by an

agent automaton that continuously updates its set of available

destinations Ii(t) and determines dynamically a sequence of

available destinations in Ii(t) to be explored. Destinations,

on the other hand, are modeled by a destination automaton

that consists of two modes corresponding to the destination

states, free or taken. The following notion of a predicate

enables us to formally define the aforementioned automata.

Definition 3.3 (Predicate): Let X = {x1, . . . , xn} be a

finite set of variables. We define a predicate ψ(X) over X to

be a finite conjunction of strict or non-strict inequalities over

X . We denote the set of all predicates over X by Pred(X).
In other words, a predicate is a logical formula. For

example, the predicate ψ(X) =
(

‖x−x0‖2 < r
)

over the set

of variables X ∈ R
N returns 1 if x belongs in the open ball

‖x−x0‖2 < r and 0 otherwise. Hence, the agent automaton

of agent i can be defined as follows.2

Definition 3.4 (Agent Hybrid Automaton): We define

the hybrid automaton of agent i to be the tuple Ai =
(XAi

, VAi
, EAi

, ΣAi
, sync, inv, init, guard, reset, f low),

where,

• XAi
= {xi, Ii} denotes the set of state variables with

xi ∈ R
2 and Ii ∈ 2I0 .

• VAi
= {1, . . . ,m} denotes the finite set of control

modes.

• EAi
= {(v, v − 1), (v, 1) | v ∈ VAi

\{1}} denotes the

set of control switches.

• ΣAi
= {takenk, assignedk | k ∈ I0} denotes the set

of synchronization labels.

• sync : EAi
→ ΣAi

with sync
(

(v, v − 1)
)

= takenk

for v ∈ VAi
\{1, 2} and sync

(

(v, 1)
)

= assignedk for

v ∈ VAi
\{1} and all k ∈ I0 denotes the synchronization

map mapping each control switch to a synchronization

label.

2To simplify notation, we hereafter drop the dependence of the state
variables xi and Ii on time t.

ẋi = um(xi, Ii)

|Ii| = m
true

ẋi = um−1(xi, Ii)

|Ii| = m − 1

ẋi = um−2(xi, Ii)

|Ii| = m − 2

ẋi = u1(xi, Ii)
|Ii| = 1

takenk

xi ∈ Bδ(dk)

Ii := Ii\{k}

xi ∈ Bδ(dk)

Ii := {k}
assignedk

xi ∈ Bδ(dk)

Ii := Ii\{k}
takenk

xi ∈ Bδ(dk)

Ii := {k}
assignedk

∧
k∈Ii

(xi 6∈ Bδ(dk))

∧
k∈Ii

(xi 6∈ Bδ(dk))

∧
k∈Ii

(xi 6∈ Bδ(dk))

Fig. 3. Hybrid Automaton for Agent i.

• inv : VAi
→ Pred(XAi

) with inv(v) =
(
∧

k∈Ii

(

xi 6∈
Bδ(dk)

))

for all v ∈ VAi
, denotes the invariant condi-

tions of the hybrid automaton.

• init : VAi
→ Pred(XAi

) with init(m) = true denotes

the set of initial conditions.

• guard : EAi
→ Pred(XAi

) with guard(e) =
(

xi ∈
Bδ(dk)

)

for all e ∈ EAi
and all k ∈ I0, denotes the set

of guards (or transitions) of the hybrid automaton.

• reset : EAi
→ XAi

with Ii := reset(e) = Ii\{k}
if sync(e) = takenk and Ii := reset(e) = {k} if

sync(e) = assignedk for all k ∈ I0, denotes the

set of resets associated with the guards of the hybrid

automaton.

• flow : VAi
→ ẊAi

with [İi ẋi] := flow(v) =
0 uv(xi, Ii)] for v ∈ VAi

, denotes the flow conditions

of the hybrid automaton that constrain the first time

derivatives of the system variables in mode v ∈ VAi
.

By Definition 3.4, for any automaton Ai, we see that

|Ii| = v for all v ∈ VAi
. Hence, every mode of Ai

corresponds to a distinct number v of available destinations

for agent i. While automaton Ai is in mode |Ii| = v, the

flow guarantees to drive agent i to a destination k ∈ Ii.

When the guard xi ∈ Bδ(dk) is enabled, Ai transitions either

to mode v′ = v − 1 if destination k is taken, or to mode

v′ = 1 if destination k is free. Note, however, that every

such transition v
e
→ v′ results in v′ < v and so, eventually

v = 1 which indicates an assignment for agent i. Note

also that these transitions are synchronized with transitions

of the destination automaton due to synchronization labels

sync(e) = takenk or sync(e) = assignedk. Figure 3 shows

the graph representation of hybrid automaton Ai.

Having defined the agent hybrid automata, we now pro-

ceed with the destination automata. As discussed above, each

destination can be in one of two states, i.e., free or taken.

This gives rise to the following definition.
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ḋk = 0
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ḋk = 0
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Fig. 4. Hybrid Automaton for Destination k.

Definition 3.5 (Destination Hybrid Automaton): We de-

fine the hybrid automaton of destination k ∈ I0 to

be the tuple Dk = (XDk
, VDk

, EDk
,ΣDk

, sync, inv, init,

guard, reset, flow), where,

• XDk
= {dk} denotes the set of state variables with

dk ∈ R
2.

• VDk
= {Free, Taken} denotes the finite set of control

modes.

• EDk
= {(Free, Taken), (Taken, Taken)} denotes

the set of control switches.

• ΣDk
= {takenk, assignedk} denotes the set of syn-

chronization labels.

• sync : EDk
→ ΣDk

with sync
(

(Free, Taken)
)

=
assignedk and sync

(

(Taken, Taken)
)

= takenk de-

notes the synchronization map mapping each control

switch to a synchronization label.

• inv : VDk
→ Pred(XDk

) with inv(v) = true for all

v ∈ VDk
denotes the invariant conditions of the hybrid

automaton.

• init : VDk
→ Pred(XDk

) with init(Free) = true

denotes the set of initial conditions.

• guard : EDk
→ Pred(XDk

) with guard(e) = true

for all e ∈ EDk
, denotes the set of guards (or transi-

tions) of the hybrid automaton.

• reset : EDk
→ XDk

with dk := reset(e) = dk for all

e ∈ EDk
, denotes the set of resets associated with the

guards of the hybrid automaton.

• flow : VDk
→ ẊDk

with ḋk := flow(v) = 0, for

all v ∈ VDk
denotes the flow conditions of the hybrid

automaton that constrain the first time derivatives of the

system variables in mode v ∈ VDk
.

By Definition 3.5, we see that the synchronization labels

of automaton Dk are always enabled. Hence, the transitions

of Dk are always synchronized with the transitions of

automaton Ai and take place when the guards of Ai are also

enabled. This synchronization models the communication

between automata Ai and Dk. Figure 4 shows the graph

representation of hybrid automaton Dk.

IV. MULTI-DESTINATION POTENTIAL FIELDS

So far we have assumed that a control law that satisfies

Assumption 3.1(b) exists. In this section we propose such

a control law, based on multi-destination potential fields. As

discussed in Sections II and III, this control law dynamically

determines the sequence of destinations to be explored, while

driving every agent to each one of these destinations.
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Fig. 5. Plot of the 4-destination potential function ϕ4(xi, Ii) for
dest(Ii) = { [.75 .75], [−.75 .75], [−.75 − .75], [.75 − .75] }.

Consider a single agent, say agent i, in R
2 and as before,

denote by xi(t) ∈ R
2 its coordinates at time t. Let I0 denote

the set of all available destinations and Ii ⊆ I0, with |Ii| =
v ≤ m, the set of available destinations of agent i.3 Denote

by γdk(xi) = ‖xi−dk‖
2
2 the distance of agent i to destination

k ∈ Ii. Then, the function, γv(xi, Ii) =
∏

k∈Ii
γdk(xi) is a

measure of the distance of agent i to the set of v destinations

Ii since clearly, γv(xi, Ii) > 0 for all xi 6∈ dest(Ii) and

γv(xi, Ii) = 0 only if xi ∈ dest(Ii). Consider, further, the

monotone increasing functions in [0,∞), σ(y) = y
1+y and

τκ(y) = yκ with κ > 0 and define the v-destination potential

function ϕv : R
2 → [0, 1] by the composition (Figure 5),

ϕv(xi, Ii) = τ1/κ ◦ σ ◦ τκ ◦ γv(xi, Ii) (3)

The rest of this section is devoted in showing that

ϕv(xi, Ii) is free of local minima and hence, the result-

ing potential field globally converges to the destination set

dest(Ii). The following proposition enables us to character-

ize the critical points of ϕv(xi, Ii) by examining the simpler

function γv(xi, Ii).
Proposition 4.1 ([19]): Let I1, I2 ⊆ R be intervals, γ :

F → I1 and σ : I1 → I2 be analytic. Define the composition

ϕ : F → I2 to be ϕ = σ◦γ. If σ is monotonically increasing

on I1, then the sets of critical points of ϕ and γ coincide,

i.e., Cϕ = Cγ , and the index of each point is identical, i.e.,

index(ϕ)
∣

∣

Cϕ
= index(γ)

∣

∣

Cγ
.

Proposition 4.1 implies that ϕv(xi, Ii) and γv(xi, Ii)
share identical critical points. In order to characterize the

critical points of γv(xi, Ii) we make use of harmonic

functions [20]. In particular, by Proposition 4.1 γv(xi, Ii)
and log(γv(xi, Ii)) share identical critical points too. But

log(γv(xi, Ii)) is harmonic (completely free of local min-

ima) and so almost global convergence of our potential field

ϕv(xi, Ii) is guaranteed. We, thus, have the following result,

which we state without proof due to space limitations.

Theorem 4.2: For any fixed destination set Ii with |Ii| =
v, the multi-destination control system,

ẋi = uv(xi, Ii) := −K∇xi
ϕv(xi, Ii) (4)

with K > 0 a positive constant, is globally asymptotically

stable almost everywhere.

3Note that, for the purpose of deriving multi-destination potential fields,
Ii is considered constant.
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V. INTEGRATION OF THE OVERALL SYSTEM

Having defined the agent and destination automata, we

now proceed with their composition and study the properties

of the overall integrated system.

Definition 5.1 (Product System): We define the product of

the hybrid automata A1, . . . , An, D1, . . . ,Dm by the tuple

S = (XS , VS , ES , ΣS , sync, inv, init, guard, reset, flow),
where,

• XS = XA1
∪ · · · ∪ XAn

∪ XD1
∪ · · · ∪ XDm

denotes

the set of state variables.

• VS = VA1
× · · · × VAn

× VD1
× · · · × VDm

denotes the

finite set of control modes.

• ES = {(‖j∈J eAj
)‖eDk

| ∀ k,J } with J ⊆
{1, . . . , n}, J 6= ∅ denotes the set of control switches,

where eS = (‖j∈J eAj
)‖eDk

∈ ES is defined as the

control switch of S corresponding to control switches

eAj
∈ EAj

, j ∈ J , and eDk
∈ EDk

, with sync(eAj
) =

sync(eDk
). Thus, the variables owned by automata

Aj for j 6∈ J do not change when control switch

eS = (‖j∈J eAj
)‖eDk

is taken.

• ΣS = ΣA1
∪ · · · ∪ΣAn

∪ΣD1
∪ · · · ∪ΣDm

denotes the

set of synchronization labels.

• sync : ES → ΣS denotes the synchronization map

mapping each control switch to a synchronization label.

• inv : VS → Pred(XS) with inv(vS) = inv(vA1
) ∧

· · · ∧ inv(vAn
) ∧ inv(vD1

) ∧ · · · ∧ inv(vDm
) for all

vS ∈ VS , denotes the invariant conditions of the product

automaton.

• init : VS → Pred(XS) with init(vS) = init(vA1
) ∧

· · · ∧ init(vAn
) ∧ init(vD1

) ∧ · · · ∧ init(vDm
) for all

vS ∈ VS , denotes the set of initial conditions.

• guard : ES → Pred(XS) with guard(eS) =
(
∧

j∈J
guard(eAj

)
)

∧ guard(eDk
) for all eS ∈ ES ,

denotes the set of guards (or transitions) of the hybrid

automaton.

• reset : ES → XS with reset(eS) =
(
⋃

j∈J
reset(eAj

)
)

∪ reset(eDk
) for all eS ∈ ES ,

denotes the set of resets associated with the guards of

the hybrid automaton.

• flow : VS → ẊS with flow(vS) = flow(vA1
) ∪ · · · ∪

flow(vAn
)∪flow(vD1

)∪· · ·∪flow(vDm
) for all vS ∈

VS , denotes the flow conditions of the hybrid automaton

that constrain the first time derivatives of the system

variables in mode vS .

Note that Definition 5.1 of the product automa-

ton S, in general allows transitions vS
eS→ v′S with

eS = (‖j∈J eAj
)‖eDk

for |J | ≥ 1. Consider, thus,

any mode vS with vAj
> 1 for j ∈ J and

vDk
= Free, and assume that the control switch eS =

(

‖j∈J (v, 1)Aj

)

‖(Free, Taken)Dk
∈ ES is enabled with

|J | > 1. Then, v′Aj
= 1 and Ij := reset(eS) = {k} for

all j ∈ J . In other words, multiple agents are assigned

simultaneously to the same destination k, which is not a

desired scenario. We argue, however, that such tie breaking

scenarios are of measure zero, since they require that the

agents are initially located at symmetric points with respect

to a destination.4

Clearly, the product system S, being the composition of

all elementary automata Ai and Dk, models the interconnec-

tion between them. Hence, studying S we can identify the

properties of the whole multi-agent system. The following

result shows that S always takes the desired action whenever

a destination is explored. In other words, agent i is always

assigned to an available destination if it is sufficiently close

to it, while it always removes a taken destination from Ii.
5

Proposition 5.2: For any agent i, any destination k ∈ I0

and all time t, the product system S has the following

properties:

(a) If xi(t) ∈ Bδ(dk) and destination k is available at time

t, then Ii(t) := {k}.

(b) If xi(t) ∈ Bδ(dk) and destination k is taken at time t,

then Ii(t) := Ii(t)\{k}.

Hence, the construction of our model is consistent with the

system requirements in Section III. The following proposi-

tion shows that every agent that has not yet been assigned

to an available destination, has always knowledge of at least

all available destinations in I(t). This property of system

S is necessary to show that each agent will eventually be

assigned to a distinct destination in I0.

Proposition 5.3: The product system S guarantees that

I(t) ⊆ Ii(t) for all time t and all agents i with |Ii(t)| > 1.

Our next result concerns the running time of the hybrid

system S. In particular, we show that the product system S

in the worst case will only take a finite number of transitions

vS
eS→ v′S , which is polynomial with respect to the number

of agents n. Hence, the number of assignments that can

be explored is at most polynomial with n. This result is

important, given that the number of assignments, and hence

the space of control modes VS of S, grows exponentially

with the number of agents n.

Proposition 5.4: Let v⋆
S = (v⋆

A1
, . . . , v⋆

An
, v⋆

D1
, . . . , v⋆

Dm
)

be such that v⋆
Ai

= 1 for all i and v⋆
Dl

= Taken for exactly

n indices l. Then, initialized at v0
S , the product system S can

reach v⋆
S in at most

n(n+1)
2 transitions vS

eS→ v′
S , where n is

the total number of automata Ai.

Having showed that the product system S satisfies the

problem specifications and has also reasonable complexity,

we now use Propositions 5.3 and 5.4 to show that it also has

the desired liveness and safety properties. In other words,

we show that every agent will eventually be assigned to

a destination in the set I0 and that no two agents will

be assigned to the same destination. We hence, have the

following theorem.

Theorem 5.5: For almost all initial conditions xi(t0),
there exists a constant T > 0 such that for all time

t > t0 + T , the product system S is in mode v⋆
S =

(v⋆
A1

, . . . , v⋆
An

, v⋆
D1

, . . . , v⋆
Dm

) with v⋆
Ai

= 1 for all i and

v⋆
Dl

= Taken for exactly n indices l = 1, . . . ,m. We call

v⋆
S the equilibrium mode of the system.

4In order to resolve tie breaking scenarios efficiently, communication
between the agents is necessary.

5Due to space limitations we omit the proof of this and the subsequent
results of this section.

FrA7.1

3337



VI. SIMULATION RESULTS

0.142

Fig. 6. Destination set dest(I0). Destinations are marked with dots.

We consider a navigation task where n = 50 agents,

starting from randomly chosen initial configurations, have

to reach the destination set dest(I0) consisting of m = 50
destinations (Figure 6). Figures 7 show the evolution of the

system at 4 different time instants. The agents are denoted

with dots, the destinations with small circles and the δ-

neighborhoods (with δ = .05) around each destination, with

big circles. Observe that the hybrid system S eventually

drives every agent to a distinct destination. Note also in

Figure 7(d) part of the trajectory of one of the agents (one

the last agents to reach its destination) until it is assigned

to a free destination. The sequence of destinations explored

is dynamically determined by the multi-destination potential

fields which involve only unexplored destinations. On the

other hand, when taken destinations are explored, they are

removed from its set of available destinations Ii.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Initial Configuration.
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(b) Intermediate Configuration.
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(c) Intermediate Configuration.
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(d) Final Configuration.

Fig. 7. Simulation for n = 50 agents.

VII. CONCLUSIONS

In this paper, we considered the problem of determining

an assignment between the agents and the destinations in

a multi-agent motion planning task. The assignment was

determined dynamically by means of exploring available

destinations and using distributed sensor-based coordination

to ensure that distinct destinations were assigned to distinct

agents. On the other hand, the sequence of destinations to be

explored, as well as navigation of the agents to any of these

destinations, was guaranteed for almost all initial conditions

by novel multi-destination potential fields. The overall hybrid

system was shown to almost always guarantee the mutual

exclusion property of the final assignment and have at most

polynomial complexity, despite the exponential growth of

the number of assignments with respect to the number of

agents. Finally, our scalable approach was verified through

non-trivial computer simulations.
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