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Abstract— The control of humanoid manipulators is very
challenging due to the large number of degrees of freedom
and the resulting redundancy. Using joint-level control com-
plex planning algorithms are needed to accomplish tasks.
For intuitive operation and hence short development times of
applications high-level control interfaces are needed. Further-
more, for many tasks it is desirable to define an impedance
behavior in task space. In this paper a flexible control law is
proposed which offers object-level impedances for two-handed
manipulation. The controller structure is based on the well-
known compliance control law. The main contributions of this
work are the way how to combine several potential functions
for two-handed manipulation and the experimental validation
of hand-arm coordination. The controller is implemented on
DLR’s humanoid manipulator Justin and its performance is
demonstrated experimentally by unscrewing a can and motion
of a grasped box.

I. INTRODUCTION

Various kinds of anthropomorphic robot arms and hands
have been developed in the past. Since most systems were
designed as separate devices, the availability of combined
hand-arm systems is still very low at the moment. Conse-
quently, most control algorithms were hence developed for
hands or arms separately.

Joint velocity, torque range, inertia, kinematics,
workspace, and its end-effector distinguish robot arms
from hands. Arms are characterized by serial chains that
have low maximum joint velocity, high joint torques, a large
workspace, and high inertia. The fingers of a hand represent
several cooperating robots with each typically less than
6 degrees of freedom (DOF). The inertia of robot fingers
is very low and the workspace is limited. The problems
related with separate control designs for hands and arms
are pointed out by Bae et al. [1]. A control law is proposed
for manipulation in 2D. Orientation, position control, and
grasping control are superimposed. Nagai and Yoshikawa
[2] specify impedances for the tool center point (TCP) of
the arm and the grasped object including an internal force
controller to ensure grasp stability. The control law was
validated experimentally on a simple setup with 1D object
motion. A hand-arm control law including the partitioning
of the contribution of the hand and the arm towards task
completion is shown by Melchiorri and Salisbury [3]. The
theory was supported by simulations and an experiment
with one finger attached to an arm.

Two-handed manipulation involving dextrous hands is par-
ticularly of interest for humanoid robots. Basic autonomous
manipulation skills as well as teleoperated manipulation
have been presented, e.g., with NASA’s Robonaut [4] and
the Japanese humanoid robot HRP [5]. Platt Jr. et al. [6]
describes a control basis that is suitable for force-based
interactions. Therein, policies that maintain wrench closure
constraints during manipulation are combined with reinforce-
ment learning and experiments are performed with Dexter.
On the platform WENDY a behavior was implemented that
allows the user to interact with the robot during task execu-
tion using its force-/torque sensors [7].

Intuitive and fast operation of a high DOF system demands
a high-level interface. E. g. commanding only the object
motion of a grasped object facilitates the development of
applications. Furthermore, many tasks are very difficult to
accomplish with one arm, like opening of a bottle. A second
hand is needed to fix the bottle while unscrewing its lid.
Figure 1 shows DLR’s humanoid manipulator Justin [8]
before opening a can.

Fig. 1. DLR’s humanoid manipulator Justin before unscrewing a can.

Equipped with two arms and two dextrous hands a wide
range of tasks can be accomplished. There is no unique
solution how a task can be achieved. A can may be opened
with power grasps or fingertip grasps for both hands or a
combination of both grasp types. In this paper we want to
present a controller structure that implements a changeable
behavior enabling the robot to fulfill a large set of possible
tasks. In contrast to control approaches designed for general
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multi-robot-systems, the proposed impedance behaviors are
custom-built for humanoid robots with two arms and two
hands.

Section II treats the design of the Cartesian impedance
behavior. In Section III two experiments validate the perfor-
mance of the proposed control laws.

II. CARTESIAN IMPEDANCE BEHAVIORS

In many robotic applications using a single manipulator
the desired Cartesian impedance behavior is typically chosen
as some sort of mass-spring-damper-like system. Thereby,
inertia shaping is a difficult issue. It is well known that
for shaping of the apparent inertia generally a measurement
of the external force is needed. As a result forces which
act at a point of the robot where they cannot be measured
will experience a different impedance behavior than desired.
Instead, it is often sufficient in practice to restrict the desired
behavior to an impedance in which only the stiffness and
the damping must be shaped while one can keep the natural
inertia unchanged, resulting in a compliance control problem.
Within this paper we also aim at impedance behaviors with-
out inertia shaping. Such a Cartesian impedance behavior
for a single arm can be seen as a viscoelastic spatial spring
attached to the end-effector. Many works in the robotics
community already treated the design of such spatial springs.
Caccavale and Natale investigated the rotational part of
the stiffness based on different orientation representations
[9], [10]. Spatial stiffness controllers including a coupling
stiffness term between translation and rotation were proposed
in the works of Fasse and Zhang [11]–[13]. Stramigioli
analyzed the power flow for these springs when the rest
length1 and the stiffness values are subject to changes [14].
One possible way how to utilize the spatial stiffness for the
control of multi-fingered hands was presented in form of the
so-called Intrinsically Passive Controller (IPC) in [15].

An important feature for all these stiffness implementa-
tions is the fact that there exists a potential function Vs

associated with the spatial spring. It is well known that the
existence of a lower bounded potential function is closely
related to the stability and passivity properties of the closed
loop system.

In the following such kind of viscoelastic spatial springs
will be used as building blocks for the definition of use-
ful Cartesian impedance behaviors for multi-fingered two-
handed (i.e. humanoid) manipulator systems. The potential
function according to a spatial spring connected between the
frames2 H1 ∈ SE(3) and H2 ∈ SE(3) will be denoted
by Vs(H1,H2,K), where the symbol K represents the
relevant parameters according to the chosen implementation
of the spatial spring (e.g. the rest length and the values of
the stiffness matrix). Appropriate choices for the potential

1For the ease of discussion the relative pose between the two connection
frames of the spring in the relaxed configuration will be simply called rest
length within this paper.

2Here, SE(3) denotes the special Euclidean group and an element H ∈
SE(3) can be written as H = [R, p] ∈ R

3×4, with a rotation matrix
R ∈ SO(3) and a translation vector p ∈ R

3.

function Vs can be easily found in the references cited
above, and therefore will not be repeated herein in detail.
An example implementation is shown in the appendix.

After discussing the implementation of the impedance
controller in Section II-A, some useful impedance behaviors
for a system consisting of two arms are discussed in Sec-
tion II-B. Then, in Section II-C an object-level impedance
controller for an hand-arm-system is discussed. Furthermore,
a combination of these impedances for two-handed object
manipulation is presented in Section II-D, which is particu-
larly useful for humanoid robots. Finally, in Section II-E the
redundancy treatment is discussed.

A. Implementation of the Impedance Behaviors

The considered dynamical model for a manipulator with
n degrees of freedom has the form of a rigid multi-body-
system and is written as

M(θ)θ̈ + C(θ, θ̇)θ̇ + g(θ) = τ + τ ext , (1)

where θ ∈ Rn is the vector of joint coordinates from all
the subsystems of the robot (arms, hands, torso, etc ...). The
matrix M(θ) ∈ Rn×n is the symmetric and positive definite
inertia matrix, C(θ, θ̇)θ̇ ∈ Rn contains the centrifugal
and Coriolis components, and g(θ) ∈ Rn is the vector of
generalized3 gravity forces. The vector τ ∈ Rn contains
the generalized actuator forces which are considered as
the control inputs. Finally, τ ext ∈ Rn contains external
generalized forces acting on the robot. In order to focus the
presentation on the multi-body part of the dynamics, other
physical effects like link and joint flexibility as well as joint
friction are neglected. Clearly, in practice it is important to
consider friction and thus to augment the controller by an
appropriate friction compensation.

For the implementation of all the presented impedance
behaviors then the well-known compliance control law

τ = g(θ) −

(
∂V (θ)

∂θ

)T

− D(θ)θ̇ , (2)

is assumed. Herein, D(θ) is a positive semi-definite damping
matrix. The overall potential function V (θ) is chosen accord-
ing to the impedance behaviors described in the following
sections. It basically consists of the sum of the individual
potential functions of all the stiffness components. While
the control law (2) represents a classical controller structure
in robotics, the way how to combine different (viscoelastic)
spatial springs (i.e. how to setup the potential function) in
an appropriate way for two-handed humanoid manipulation
is the main contribution of the present paper.

From a passivity point of view, the damping matrix D(θ)
can be any positive semi-definite matrix. Herein it is chosen
such that the Cartesian closed loop behavior is critically
damped. This can be achieved via a double diagonalization4

3Depending on the type of joint (rotational or prismatic) this generalized
force is either a torque or a force.

4Given a symmetric and positive definite matrix A ∈ R
n×n and a

symmetric matrix B ∈ R
n×n. Then one can find a non-singular matrix

Q ∈ R
n×n and a diagonal matrix B0 ∈ R

n×n, such that QT Q = A
and B = QT B0Q [16].
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of the inertia matrix M(θ) and the Hessian of the potential
function ∂2V (θ)

∂θ2 .

B. Coordinated Two-Armed Manipulation

For a two-arm system an impedance behavior could simply
be designed by using two spatial springs Kr and Kl for the
right and the left arm, which connect the end-effectors to
the virtual equilibrium frames Hr,d and H l,d, respectively.
If the springs are implemented as complete 6D-springs (i.e.
with full rank (6 × 6)-stiffness matrices), then the complete
Cartesian motion of the arms can be influenced already via
only these two springs. For some applications it is useful if
some part of the motion is instead defined via an additional
coupling spring Kc between the arms. Clearly, in such a
configuration (as shown in Fig. 2) both the rest lengths as
well as the stiffness values of the individual springs and
the coupling spring should be chosen in a compatible way
such that the springs do not interfere with each other. The
complete potential function for such a two-arm impedance
is given by

V (θ) = Vs(Hr(θ),Hr,d,Kr) + Vs(H l(θ),H l,d,Kl) +

Vs(Hr(θ),H l(θ),Kc) . (3)

With an impedance structure as depicted in Fig. 2 one
can thus implement different behaviors, ranging from an
independent control of the arms via Kr and Kl to a pure
coupling based on Kc. One disadvantage of this structure,
however, is the fact that the springs should not be designed
independently, but in a compatible way as explained above.

Instead of the two individual springs attached to
the end-effectors one can define a virtual object frame
Ho(Hr(θ),H l(θ)) depending on the two end-effector
frames as sketched in Fig. 3. Such a virtual object was
used by Natale in [10]. The object frame was chosen as
Ho = [Ro,po] with po = 1

2 (pr + pl) and Ro = RrR̄rl,
where R̄rl denotes a half 5 of the rotation matrix R−1

r Rl.
This virtual object is connected via a spatial spring Ko to
a virtual equilibrium pose Ho,d. In combination with the
coupling stiffness, one can intuitively define an impedance
behavior which is useful for grasping large objects with two
arms. The relevant potential function is given by

V (θ) = Vs(Ho(Hr(θ),H l(θ)),Ho,d,Ko) +

Vs(Hr(θ),H l(θ),Kc) . (4)

C. Object-Level Control of a single Hand-Arm-System

In [17] we presented a passivity-based object-level con-
troller for a multifingered hand similar to [15] which is based
on the compliance control law (2). This controller can be
applied also to combined hand-arm-systems, e. g. dextrous
hands mounted on an arm. This controller will be combined
with the impedances from Section II-B in the following to
build complete two-hand impedance behaviors. Therefore,
the controller from [17] is reviewed shortly. Notice that

5This halving of the rotation matrix can easily be done using an angle-axis
representation.
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Fig. 2. Two-arm impedance behavior by adding a coupling spring to the
individual arm springs.

PSfrag replacements Ho(θ)
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Fig. 3. Two-arm impedance behavior by combining a coupling spring with
an object level spring.

herein θ contains both the joint angles of the hand and of
the arm.

It is assumed that the N fingertips of each hand are in con-
tact with the object. For point contacts with friction (PCWF),
the held object could be manipulated using only hand joints
in 3D-space if N ≥ 3 and if each finger has a configuration
space of dimension ≥ 3. However the workspace of the hand
is limited. The typically large range of the arm increases the
workspace heavily. Instead of controlling each TCP of the
fingers, object-level control is employed. It has in general the
advantages that it is easy to define grasp forces, to specify
forces acting on the object, and to avoid unnecessarily high
internal forces [18]. The dimension of the task space is
6 + M , with M the dimensions related to internal forces.
The redundancy of a hand-arm-system w.r.t to the task is
very high. The treatment of redundancy will be described
later in Section II-D.

We assume furthermore that
• The internal forces provided by the controller are chosen

to be sufficient such that the friction constraints are
fulfilled for all contact points (no sliding).

• In order to allow 6D object motion the contact between
the object and the hand are restricted to the fingertips
(no palm contact).

• The object geometry is convex.
In contrast to [15] the object frame is defined uniquely by

the positions of the fingertips. We propose a frame which is
attached to the center of the fingertip positions

xho(θ) =
1

N

N∑

i=1

xi(θ), (5)
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Fig. 4. DLR Hand II superimposed by the virtual springs defined by the
potential functions in equation (10).

where xi(θ) ∈ R3 represents the Cartesian fingertip position
for finger i w.r.t the base of the arm. For simplicity we
omit the dependence on θ in this section. The orientation
Rho = [r1,ho, r2,ho, r3,ho] is defined based on the Cartesian
fingertip positions as well. For N = 4 fingers the unit vector
r1,ho is defined in the plane spanned by the vectors being
defined by the connections between fingers 1 and 3 and
between fingers 2 and 4, that is

r̃1,ho =
x1 − x3

‖x1 − x3‖
+

x2 − x4

‖x2 − x4‖
, r1,ho =

r̃1,ho

‖r̃1,ho‖
. (6)

The unit vector r3,ho is defined perpendicular to this plane
and r2,ho is defined such that rho belongs to SO(3):

r̃3,ho = x̂1 − x3(x2 − x4), r3,ho =
r̃3,ho

‖r̃3,ho‖
,

r2,ho = r̂3,hor1,ho,
(7)

with the skew-symmetric operator

ŵ : R3 → R3×3, ŵ =




0, −w3, w2

w3, 0, −w1

−w2, w1, 0


 . (8)

The virtual object frame Hho can be stacked to Hho =
[Rho,xho] ∈ SE(3). Note that this representation has sin-
gularities if xj − xj+2 = 0 for j = 1 ∨ j = 2 or if
(x1−x3)‖(x2−x4). For common convex objects like boxes,
cylinders or spheres these singularities pose no problem. If
we want to extend to more than four fingers we can make
sure that all elements of Hho are a function of all fingertip
positions. The virtual object frame is related to the real object
frame if we assume that the relative contact points between
the fingertips and the object do not change (neglecting rolling
effects).

In addition to an impedance related to the object pose,
impedances to realize grasping forces are added. These
impedances connect each fingertip position xi with the
virtual object frame (compare Fig. 4). The potential is chosen
to be spherical for each fingertip:

Vhc(θ,Khc) =
1

2

N∑

i=1

Khc,i [‖∆xi‖ − li,d]
2
, (9)

with ∆xi = xi −xho as the distance from the fingertip i to
the virtual object frame xho, and Khc,i > 0 the correspond-
ing connecting stiffness. The value li,d corresponds to the
rest length of the connecting stiffness. We summarize Khc,i

and ld,i for i = 1, . . . , N in Khc.
The desired potential for the object-level control law

is composed of the potentials to derive the spatial object
stiffness and the connecting stiffness, and thus is given by

V (θ) = Vs(Hho(θ),Hho,d,Kho) + Vhc(θ,Khc). (10)

Inserting this potential into equation (2) a control law is
obtained which generates the control torques for the arm and
the hand. However, since the grasping forces sum up to zero
at the end-effector of the arm, the internal forces are not
mapped onto the arm.

D. Coordinated Two-Handed Manipulation

The impedances from the previous two subsections serve
as a basis to generate impedance behaviors for two-handed
manipulation. Based on the finger configuration of the hands
two virtual object frames Ho,r(θ) and Ho,l(θ) are defined
for the right and the left hand, respectively. The two-arm
object impedances from Section II-B are then attached to
these virtual objects, while in Section II-B they were attached
to the end-effectors of the two arms. In combination with the
connecting springs for realizing the grasp force from Section
II-C intuitive impedance behaviors for the complete two-arm-
hand-system are obtained. In Fig. 5 it is outlined how the
object-level potential (4) (cf. Fig. 3) is extended.

PSfrag replacements
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H l,d
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Fig. 5. Two-hand impedance behavior by combining the object-level
impedances of the hands and the arms.

The potential functions for the impedances which gener-
alize (3) and (4) to two-handed manipulation are given by

VI(θ) = Vs(Ho,r(θ),H(o,r),d,Kr) +

Vs(Ho,l(θ),H(o,l),d,Kl) +

Vs(Ho,r(θ),Ho,l(θ),Kc)

Vhc,r(θ,Khc,r) + Vhc,l(θ,Khc,l) , (11)
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and

VO(θ) = Vs(Ho(Ho,r(θ),Ho,l(θ)),Ho,d,Ko) +

Vs(Ho,r(θ),Ho,l(θ),Kc) +

Vhc,r(θ,Khc,r) + Vhc,l(θ,Khc,l) , (12)

where Vhc,r(θ,Khc,r) and Vhc,l(θ,Khc,l) are the potential
functions of the finger connection springs according to (9) for
the right and the left hand, respectively. Using these potential
functions together with (2) coordinated control laws for a
hand-arm-system are achieved.

E. Redundancy Treatment

Up to now only the Cartesian impedance behavior of the
robot was considered. Clearly, in addition to the Cartesian be-
havior also the control of the nullspace behavior is important
for kinematically redundant hand-arm-systems. Therefore,
many different objectives like, e.g., the optimization of a
manipulability index or an additional obstacle avoidance po-
tential are possible. Herein, we only consider the avoidance
of joint limits. Notice that this is particularly important for a
combined hand-arm-system, since the workspace of the arm
and the hand are quite different.

One simple, but effective, possibility to implement an
impedance behavior for joint limit avoidance is to use another
potential function Vl(θ) in superposition with (10),(12) or
(11). Let θi denote the ith element of θ and θi,min and
θi,max its minimum and maximum value. Let further denote
δi ∈ R+ and ki ∈ R+ a safety distance and a joint-limit
stiffness value for the ith coordinate, then one can use a
repelling potential function of the form

Vl(θ) =
1

2

n∑

i=1

kiei(θi)
2 (13)

ei(θi) =





θi − (θi,max − δi) for θi > (θi,max − δi),

θi − (θi,min + δi) for θi < (θi,min + δi),

0 otherwise.

One simple way how to use Vl(θ) for joint limit avoidance
is to superimpose it with (12). In case that the joint limit
avoidance should effect only the redundant nullspace motion,
then instead of (2) one should use a controller of the form

τ = g(θ) −

(
∂V (θ)

∂θ

)T

−N (θ)

(
∂Vl(θ)

∂θ

)T

− D(θ)θ̇ ,

(14)
where N (θ) is a nullspace projection matrix which projects
the differential of Vl(θ) onto the complement of the range
space of the transposed body Jacobian matrices associated
with the virtual object poses Ho,r(θ) and Ho,l(θ)6. Such
kind of nullspace projections are in fact widely used in the
literature on the control of redundant robots. But it should
be mentioned that in contrast to (2) the control law (14)
generally will not be a passive mapping from θ̇ to −τ . The
passivity properties of (14) instead depend on the particular
form of N (θ).

6In the case of the impedance behavior of Section II-C only one of the
poses is used for the nullspace projection.

III. EXPERIMENTS

The proposed impedance behaviors have been imple-
mented and examined with DLR’s humanoid manipulator
Justin ( [8], Fig. 1). This system consists of two four-
fingered 12DOF DLR hands [19] and two 7DOF light-
weight arms LWR-III [20] mounted on a 3DOF movable
torso. The hands and arms are mounted in a humanoid
configuration with a right-handed and a left-handed hand-
arm-system. All the 41 joints7 of the torso-arm-hand-system
have joint torque sensors in addition to the common motor
position sensors. In the following experiments lower-level
joint torque controllers8 are used which get as their set-points
the torque resulting from (14). Since Justin has 41 torque-
controlled DOF it is cumbersome to evaluate all these torques
for the experiments. Instead the generalized task space forces
of selected springs are analyzed. For the potential function
Vs(H1(θ),H2(θ),Ki) of a single spatial spring, f i,j ∈ R3

and mi,j ∈ R3 denote the Cartesian forces and torques at the
frame Hj(θ) and represented in frame Hj(θ). In Appendix
B it is shown in detail how these generalized forces are
computed. Additionally, the four fingertip forces fhc,i of the
connecting springs (9) fhc,i = Khc,i(‖∆xi‖− li,d) [17] will
be analyzed.

Two manipulation scenarios have been implemented: A)
Unscrewing of a can and B) Fine manipulation of a box.
In the first experiment the impedance behavior presented in
Section II-C is evaluated in order to examine the coordination
of the right arm and hand motion. In the second experiment
a coordinated two-handed manipulation will be shown by
applying the impedance behavior based on VO(θ) to the
complete humanoid manipulator system. In both experiments
the parameters of the joint limit avoidance are set to δi = 20◦

and ki = 2 Nm/rad for the joints of the hands ki = 0 for
the arm and torso joints. All experiments also appear in the
video appended to this paper.

A. Hand-Arm Coordination: Unscrewing of a Can

Figure 1 depicts Justin in the start position to open a can.
The left hand holds the can with a joint-level impedance con-
trolled power grasp and the left arm is position-controlled.
The right hand is initially above the can. In this particular
application only the right hand-arm-system is object-level
impedance controlled. While the object forces have also been
analyzed in [17] for the hand alone, herein the focus is put
on the coordination of the arm and hand motion.

A sequence of object-level commands9 for opening the
can is sent to the robot:

1) Approach can.
2) GRASP: Shorten rest length of connecting stiffness.

7Two additional joints of the pan-tilt unit for the camera head are not
used in these experiments.

8Notice that the incorporation of the joint torque controllers in the analysis
would allow to consider also the flexibility of the joints as it was done in
[21], [22]. However, the treatment of this paper instead focuses on the rigid-
body behavior and, therefore, the joint flexibility is neglected.

9Commands are variations of the virtual equilibrium frames or rest
lengths. These commands are linearly interpolated.
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3) TURN: Rotation along the screw direction and jump
to 6) if the lid was rotated two times.

4) RELEASE: Increase rest length of connecting stiffness
to release object.

5) RETURN: Rotate against screwing direction while
fingers are not in contact with the lid.

6) Remove lid by a lateral motion.
In order to demonstrate the performance of the selected

control law a step in the rotation of 0.3 rad was commanded
instead of interpolating the commands. In Fig. 6 the right
hand object impedance torque mho,r shows that the control
law converges well damped to values smaller than 0.3 Nm.
The right hand object impedance force fho,r varies less
than 1 N during the pure object rotation indicating very
small coupling of rotational and translational motion (see
Fig. 7). Theoretically, mho,r and fho,r should converge to
zero. However, due to uncompensated friction a residual
error remains. The connecting forces of the right hand
vary less than 0.5 N as shown in Fig. 8. Note that in
this hand configuration two fingers are opposing each other
explaining that their corresponding connecting forces have
similar values.

0 50 100 150 200 250 300 350 400
−3

−2.5

−2

−1.5

−1

−0.5

0

 

 

PSfrag replacements
xho

Rho

r1,ho

r2,ho

r3,ho

x1

x2

x3

x4

Time [ms]

Hand object force fho,r [N]

H
an

d
ob

je
ct

to
rq

ue
m

h
o
,r

[N
m

]

Connecting force fhc [N]
Object force fo [N]

Object torque mo [Nm]
fho,x

fho,y

fho,z

mho,x
mho,y
mho,z

fhc,1

fhc,2

fhc,3

fhc,4

fo,x

fo,y

fo,z

mo,x

mo,y

mo,z

fc,x

fc,y

fc,z

mc,x

mc,y

mc,z

Fig. 6. Object impedance torque mho,r during the rotation around the
object z−axis about 0.3 rad using a rotational stiffness of 10 Nm/rad.
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Fig. 7. Object impedance force fho,r during the rotation around the object
z−axis about 0.3 rad using a translational stiffness of 500 N/m.

Figure 9 illustrates the contribution of the arm and the
hand towards the object motion. For simplicity we look
at the Euclidean norm of the joint velocities at each time
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Fig. 8. Connecting forces fhc,r during the rotation around the object
z−axis about 0.3 rad using Khc,i = 300 N/m.

step10. The hand joint velocities ‖θ̇h‖ are bigger than the
arm velocities ‖θ̇a‖ by a factor of 40. There are some major
reasons:

• The static friction limit of the arm is higher compared
to the hand’s one.

• The response time of the arm joints is lower due to
higher inertia and limited torque.

• The length of the robot links are roughly speaking
hand : arm = 1 : 10.

• The configuration of the hand is suited very well for this
step response and the nullspace component of equation
(14) is small.

Furthermore, one can see that the fast part of the hand motion
is finished much earlier than the arm motion.
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Fig. 9. Euclidean norm of the joint velocities of the arm ‖θ̇a‖ (dashed)
and the hand ‖θ̇h‖ (solid) during the rotation around the object z−axis
about 0.3 rad.

B. Two-handed Coordination: Fine Manipulation of a Box

In this experiment Justin is holding an object with contacts
only at the fingertips of both hands (Fig. 10). We commanded
translational motion on object-level using the control law
(14) and the potential function (12) applied to the com-
plete upper body system. Accordingly, all joints of Justin
contributed to the object motion. The box is moved along
different axes (see appended video). Again, we investigate

10The Euclidean norm gives a meaningful value for this comparison since
all joints of Justin are revolute.
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Fig. 10. Justin holding a box with two hands. The box is contacted only
via fingertips.

the step response of the controller: A translation of 4 cm
along the z−axis is commanded. Here, the object forces f o

and torques mo are shown, which are the forces and torques
from the spatial spring Ko rotated into the base frame. In Fig.
11 the object impedance force f o is reduced at a high rate
which is mostly due to hand motion. The response contains
an overshoot of about 5 N and converges after 500 ms. Fig.
12 depicts low couplings with the rotational part mo of
the object stiffness that is perturbed less than 0.5 Nm. The
coupling impedance forces f c,r and mc,r varies less than
4 N and 0.3 Nm, respectively, and converges to a steady-
state (Fig. 13).
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Fig. 11. Object impedance force fo during box motion of 4 cm using a
translational stiffness of 1000 N/m.

IV. CONCLUSIONS

A two-arm control law consisting of a set of impedances
was presented. First, separate Cartesian impedance con-
trollers for the arms are combined with a compatible coupling
impedance. Then an object-level control for the arms was
discussed. An object-level control for a hand-arm system
was presented and its combination with the two-arm con-
troller led to the construction of a control law for two-
handed manipulation. With this controller we can define the
impedance of the grasped object and can command motions
in 6D. Besides, only internal forces have to be parameterized
by setting the coupling and connecting impedances. Two
experiments, unscrewing a can and manipulation of a box,
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Fig. 12. Object impedance torque mo during box motion of 4 cm using
a rotational stiffness of 10 Nm/rad.
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Fig. 13. Spatial coupling impedance force f c,r and torque mc,r during
box motion of 4 cm. The translational and rotational stiffness were chosen
as 500 N/m and 3 Nm/rad, respectively.

prove the effectiveness of our approach as also can be seen
in the appended video.

APPENDIX

A - Example Implementation of a Spatial Spring

In this appendix we provide one example implementation of
a potential function related to a spatial spring between the
frames H1 = [R1,p1] and H2 = [R2,p2].

The potential function is split up into a translational and
a rotational part

Vs(H1,H2,K) = Vt(p1,p2,K) + Vr(R1,R2,K). (15)

The translational part is simply chosen as

Vt(p1,p2,K) = 1
2eT Kte , (16)

where e = p1 − p2 − p12,0 is the translational deviation
of the displacement p1 − p2 from its rest length p12,0. The
symmetric and positive definite matrix Kt ∈ R3×3 is the
translational stiffness matrix. The rotational part is chosen
as

Vr(R1,R2,K) = 2εT Krε , (17)
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where ε is the vector part of the unit quaternion represen-
tation [10] of R1v,2v = RT

1,1vRT
1 R2R2,2v (see Fig. 14).

The rotation matrices R1,1v,R2,2v ∈ SO(3) define the
”rotational rest length” of the spring. The matrix Kr ∈ R3×3

represents the rotational stiffness matrix which is symmetric
and positive definite.
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Fig. 14. Rotation matrices for constructing the rotational part of the spring.

The parameters K of this spatial spring are: The transla-
tional and rotational stiffness matrices Kt,Kr as well as the
translational and rotational rest length p12,0,R1,1v,R2,2v .

B - Computation of the Cartesian Forces

The Cartesian forces and torques are related
to the differential of the potential function
∂Vs(H1(θ),H2(θ),Ki))/∂θ := τ i(θ)T as follows.
Clearly, one can write the differential in the form

τ i(θ)T =
2∑

j=1

f ′T
i,j︷ ︸︸ ︷

∂Vs(H1(θ),H2(θ),Ki)

∂pj(θ)

∂pj(θ)

∂θ
+

∂Vs(H1(θ),H2(θ),Ki)

∂ε(θ)︸ ︷︷ ︸
nT

i

∂ε(θ)

∂θ
.

The time derivative of the vector part of the unit quaternions
can be written as ε̇ = Jωε(θ)ω12, where ω12 = ω2 − ω1

represents the relative angular velocity between the frames
H1(θ) and H2(θ) and Jωε(θ) is the Jacobian between
the orientation representations. With this mapping and the
principle of virtual work it is easy to see that the task space
torques can be written as

m′
i,1 = −Jωε(θ)T ni , m′

i,2 = Jωε(θ)T ni .

The generalized task space forces analyzed in the experi-
ments are computed by rotation of f ′

i,j and m′
i,j in to the

frame Hj(θ) via

mi,j = Rj(θ)T m′
i,j , f i,j = Rj(θ)T f ′

i,j .
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