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Abstract— This paper describes an investigation into the
adaptive control of autonomous mobile sensor platforms for
providing oceanographic sampling. Mobile sensor platforms
provide an ability to rapidly sample oceanographic data of in-
terest for real-time input into ocean environmental models with
the goal of reducing the modeling uncertainty by introducing
selected sampled data. The major objective of this paper is to
describe the autonomy architecture developed to support adap-
tive sampling. This architecture consists of an open-source dis-
tributed autonomy architecture and an approach to behavior-
based control of autonomous vehicles using multiple objective
functions that allows reactive control in complex environments
with multiple constraints. Experimental results are provided
for an adaptive ocean thermal gradient tracking application
performed by an autonomous surface craft in Monterey Bay.
These results highlight not only the suitability of autonomous
sensor platforms for providing adaptive sampling of the ocean
environment but, also, the suitability of our behavior-based
autonomy approach and distributed autonomy architecture
for providing a simple, flexible, and scalable method for
autonomous sensor platform control. The paper concludes with
an overview of future adaptive sampling experiments planned
with autonomous underwater sensor platforms using the same
methodology.

I. INTRODUCTION

In the uncertain ocean environment, conventional oceano-

graphic measurement systems can not capture environmental

uncertainties on short temporal scales or on very small

spatial scales, creating the need for high resolution, in-

situ, measurements. Rapidly deployable in-situ measure-

ment systems have long been recognized as an important

requirement for capturing environmental uncertainties on

scales ranging from 10 to 1000 meters. The Adaptive Rapid

Environmental Assessment (AREA) concept was developed

to minimize the sonar performance prediction in an area of

ocean by adaptively identifying an optimal deployment of

in-situ measurement resources and capturing the uncertainty

of the most critical and the most uncertain environmental

parameters (Fig. 1) [1]. Moreover, the AREA concept can

also be applied to minimizing the prediction uncertainty for

biologic, chemical, and other oceanic processes of interest.

We are motivated by the following scenario: an oceanogra-

pher, having identified a general area of particular uncertainty

with regards to an ocean process of interest, remotely deploys

an autonomous sensor platform (perhaps on patrol in the

area) to gather real-time sensor measurements. Since the

optimum sampling path for reducing the model uncertainty
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Fig. 1. The Adaptive Rapid Environmental Assessment (AREA) concept
was developed to minimize acoustic prediction uncertainty by adaptively
identifying an optimal deployment of in-situ measurement resources, cap-
turing the uncertainty of the most critical and uncertain environmental
parameters in terms of long term return taking into account existing
operational constraints.

is usually not predetermined, the sensor platform must adap-

tively maneuver itself based on the real-time measurements.

Once the sampling is complete, the sensor platform can

transmit back the raw or processed data. Feedback from the

updated ocean model can then be transmitted back to the

sensor platform.

The control requirements for an autonomous sensor plat-

form performing this type of mission are quite severe. Not

only must such a platform contend with adaptively altering

its motion in response to real-time sensor measurements, it

must also contend with a number of harsh environmental

conditions that could affect not only the quality of the

sampling but, also, the survivability of the platform itself.

These conditions include wind, waves, currents, obstacles,

and uncertain navigation in the case of underwater platforms.

An autonomous control system for such a platform must

therefore be capable of reacting to multiple, sometimes

complex, environmental conditions in real time in such a

way as to maximize the sampling performance. It is also

desirable for such a system to be capable of joint control

with other cooperating sensor platforms.

In this work we address these challenges by presenting

a novel autonomy architecture and a set of sensor platform

behaviors and present experimental validation of this work

obtained in an adaptive sampling experiment in Monterey

Bay by a fully autonomous surface craft equipped with an

appropriate oceanographic sensor.
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II. TECHNICAL APPROACH

In this section we present our general autonomy archi-

tecture and how the particular components that reflect the

contribution of this work fit into that architecture. The outline

for experimental validation is also discussed.

A. The MOOS-IvP Autonomy Architecture

This work uses the MOOS-IvP architecture for au-

tonomous control. MOOS-IvP is composed of the Mission

Oriented Operating Suite (MOOS), a open source software

project for coordinating software processes running on an

autonomous platform, typically under GNU/Linux. MOOS-

IvP also contains the IvP Helm, a behavior-based helm that

runs as a single MOOS process and uses multi-objective

optimization with the Interval Programming (IvP) model for

behavior coordination [2], [3]. See [4] [5], and [6] for other

examples of MOOS-IvP on autonomous marine vehicles.

A MOOS community contains processes that communi-

cate through a database process called the MOOSDB, as

shown in Fig. 2(a). MOOS ensures a process executes its

“Iterate” method at a specified frequency and handles new

mail on each iteration in a publish and subscribe manner. The

IvP Helm runs as the MOOS process pHelmIvP (Fig. 2(b)).

Each iteration of the helm contains the following steps: (1)

iPWMControlleriGPS

pMOOSBridge

pLogger

pTracker

iMicroModem

pNav

MOOSDB
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(b) The pHelmIvP process

Fig. 2. The IvP Helm runs as a process called pHelmIvP in a MOOS
community. MOOS may be composed of processes for data logging
(pLogger), data fusion (pNav), actuation (iPWMController), sensing (iGPS),
communication (pMOOSBridge, iMicroModem), and much more. They can
all be run at different frequencies as shown.

mail is read from the MOOSDB, (2) information is updated

for consumption by behaviors, (3) behaviors produce an

objective function if applicable, (4) the objective functions

are resolved to produce a single action, and (5) the action

is posted to the MOOSDB for consumption by low-level

control MOOS processes. The behaviors responsible for

control in the oceanographic sampling platform used in this

work are discussed in Section IV.

B. Autonomous Sampling

In many applications, MOOS processes are used to process

and abstract sensor data for use by the vehicle behaviors. This

is especially true when computations can take longer than

the individual vehicle control cycle. In this work, a MOOS

process provides the driver for interfacing with the physical

sensor. This process posts sensor data to the MOOSDB

at a frequency of one Hertz. Another MOOS process is

responsible for coordinating the sampling. At each sampling

station, this sampling process lowers the sensor to the proper

depth and records the ocean temperature at that depth for

later use by the gradient calculation algorithm. After subse-

quently raising the sensor, a flag is posted to the MOOSDB

indicating that sampling is finished. At the conclusion of

each sampling segment (see Fig. 5) the sampling process

computes the 2D thermal gradient direction from the sampled

data and dynamically sets the mean bearing for the next

sampling segment. When the maximum number of segments

have been sampled, the sampling process posts a flag to

the MOOSDB which deactivates the sampling behaviors

and activates the behavior to return the surface craft to a

predetermined location.

C. Validation with Experimental Data

Experimental validation of this work is presented using an

autonomous surface craft specially developed to be a mobile

oceanographic sampling platform. The use of surface craft

for this type of oceanographic sampling has both advantages

and disadvantages versus using autonomous underwater ve-

hicles (AUVs). The surface craft are able to maintain much

better navigation and communications than an AUV could.

However, the surface craft are at a disadvantage with respect

to sampling due to the time and power requirements needed

to raise and lower the sensor at each sampling station. The

AUV, able to sample continuously (on the order of a sample

per second) in 3D space, can provide a much higher sampling

density.

III. THERMAL GRADIENT COMPUTATION

The 2D thermal gradient can be defined in Cartesian

coordinates as

∇T (x, y) =
∂T

∂x
x̂ +

∂T

∂y
ŷ (1)

where T is the ocean temperature at a point (x, y) with
z fixed. Of course, ∇T can also be expressed in three

dimensions but, we will only concern ourselves with the 2D

case in this experiment because we are interested only in

following the horizontal temperature gradient. The gradient

is estimated using a standard linear least squares estimation

method based on in-situ measurements on each sampling

segment as follows:

D = (P T P )−1PT T (2)

where P is the (N x 2) matrix containg the vehicle sampling

coordinates, T is the (N x 1) vector containg the sampled

temperatures at each vehicle coordinate, and D is the (2 x

1) vector containing the two x and y directional components

of ∇T . The gradient direction is resolved by taking the arc-

tangent of the two components of D. This method does not

assume that the sampling points are equally spaced. However,

problems can be encountered if not enough samples are taken

or the spatial extent of the sampling in the (x, y) plane is
not large enough to overcome the small-scale temperature

fluctuations.
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IV. THE IVP HELM AND VEHICLE BEHAVIORS

Here we describe the use of multi-objective optimization

with interval programming and the primary behaviors used

in this experiment. For further examples of this approach,

although with different missions and behaviors, see [4], [6].

A. Behavior-Based Control with Interval Programming

By using multi-objective optimization in action selection,

behaviors produce an objective function rather than a single

preferred action ( [2], [7], [8]). The IvP model specifies both

a scheme for representing functions of unlimited form as

well as a set of algorithms for finding the globally optimal

solution. All functions are piecewise linearly defined, thus

they are typically an approximation of a behavior’s true

underlying utility function. Search is over the weighted sum

of individual functions and uses branch and bound to search

through the combination space of pieces rather than the

decision space of actions. The only error introduced is in

the discrepancy between a behavior’s true underlying utility

function and the piecewise approximation produced to the

solver. This error is preferable compared with restricting the

function form of behavior output to say linear or quadratic

functions. Furthermore, the search is much faster than brute

force evaluation of the decision space, as done in [8]. The

decision regarding function approximation accuracy is a local

decision to the behavior designer, who typically has insight

into what is sufficient. The solver guarantees a globally

optimal solution and this work validates that such search

is feasible in a vehicle control loop of 4Hz on a 600MHz

computer. To enhance search speed, the initial decision

provided to the branch and bound algorithm is the output of

the previous cycle, since typically the optimal prior action

remains an excellent candidate in the present, until something

changes in the world.

Although the use of objective functions is designed to

coordinate multiple simultaneously active behaviors, helm

behaviors can be easily conditioned on variable-value pairs

in the MOOS database to run at the exclusion of other

behaviors. Likewise, behaviors can produce variable-value

pairs upon reaching a conclusion or milestone of significance

to the behavior. In this way, a set of behaviors could be run

in a plan-like sequence, or run in a layered relationship as

originally described in [9].

B. The Waypoint Behavior

The Waypoint behavior is designed for transiting to a set

of specified waypoints. The objective function produced by

this behavior is defined over the 2D action space given by

possible heading and speed choices and produces objective

functions that favorably rank actions with smaller detour

distances along the shortest path to the next waypoint. Once

the last waypoint in the set has been reached, the behavior

will set its completed flag to true. Several predefined regular

waypoint patterns have been defined including orbits and the

“zigzag” pattern that was used during the experimental run

shown in Fig. 5. For the zigzag pattern, the mean direction,

amplitude, period and length of the pattern are specified. For

the adaptive sampling run shown in Fig. 5, the parameters

for the zigzag pattern were dynamically generated by the

MOOS sampling process..

C. The StationKeep Behavior

The StationKeep behavior is designed to keep the vehicle

at a given position by varying the speed to the station

keeping point as a linear function of its distance to the

point. The parameters allow one to choose the two distances

between which the speed varies linearly, the range of linear

speeds, and a default speed if the vehicle is outside the

outer radius. This station keeping behavior conserves energy

and aims to minimize propulsor use. The objective function

produced by this behavior is defined over the 2D action space

given by possible heading and speed choices and produces

objective functions that favorably rank actions that result

in smaller distances from the station point. An example of

the objective function for this behavior is shown in Fig. 3.

For the adaptive sampling run shown in Fig. 5, the desired

station keeping point is dynamically generated by the MOOS

sampling process.

COURSE

OPTIMUM

SPEED

Fig. 3. Objective function for the StationKeep behavior. This plot shows
an example objective function for the StationKeep behavior with the station
point being at a course of 10 degrees from the current vehicle position.
The function is plotted in polar form with the theta direction being course
and the radial direction being speed with darker colors indicationg higher
values.

D. The ConstantSpeed Behavior

The ConstantSpeed behavior is designed to keep the

vehicle moving at a constant speed. The objective function

produced by this behavior is defined over the 1D action space

given by possible speed choices and produces objective func-

tions that favorably rank actions with the smallest deviation

from the desired speed.

E. The Timer Behavior

The Timer behavior is designed to be active for a fixed

number of seconds after activation after which it completes

and posts its endflags. This behavior produces no objective

function.
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V. EXPERIMENT SETUP

Experimental validation of the architecture and algo-

rithms for autonomous adaptive sampling was conducted

using an autonomous surface craft carrying a conductivity-

temperature-depth (CTD) sensor which could be au-

tonomously raised and lowered to take measurements of the

ocean temperature profile. The experiment was conducted off

of the R.V. Point Sur operating in Monterey Bay, California

on August 29, 2006. The scenario called for the CTD-

equipped surface craft to sample the water temperature at

a constant depth of 20 meters in a regular interval in a

zigzag spatial pattern for a predetermined distance. Once

this distance was reached, the compute the direction of

the thermal gradient and would then sample another zigzag

pattern in that direction. The plan called for this sampling

to continue until the surface craft was low on power. Since

wind, waves, and current can all act to push a surface craft

off of its intended station, a special station keeping behavior

was implemented that was designed to keep the surface craft

close to its intended sampling location.

A. Marine Vehicle Platforms

The autonomous surface crafts used in this experiment are

based on a kayak platform (Fig. 4). Each is equipped with

a Garmin 18 GPS unit providing position and trajectory up-

dates at 5 Hz. The vehicles are also equipped with a compass

but the GPS provides more accurate heading information, and

is preferred, at speeds greater than 0.2 meters per second.

Each vehicle is powered by 5 lead-acid batteries and a Minn

Fig. 4. The kayak-based autonomous surface craft. These lightweight
and portable platforms are not only suitable proxies for the much larger
autonomous underwater vehicles but also show the suitability of autonomous
surface craft for oceanographic sampling. The left photo shows an au-
tonomous kayak on station in Monterey Bay while the right photo shows
details of the autonomously controlled winch used to raise and lower the
Seabird Electronics SBE 49 FastCAT CTD sensor.

Kota motor providing both propulsion and steerage. The

vehicles have a top speed of roughly 2.5 meters per second.

See [10] for more details on this platform. The kayak used

in this experiment was equipped with a Seabird Electronics

SBE 49 FastCAT CTD sensor, a DC powered, pumped, CTD

sensor commonly used on small ROVs and AUVs.

B. Behavior Configurations

A total of six behaviors were used for the adaptive sam-

pling experiment shown in Fig. 5. Upon startup, a Waypoint

behavior is active in order to get the vehicle to the proper

starting location for the experiment. Upon reaching the de-

sired location, the Waypoint behavior completes and activates

another Waypoint behavior which controls the zigzag motion

pattern. For this run, an amplitude and period of 150 meters

and a distance of 300 meters were used for the zigzag pattern.

An initial bearing of 270 degrees was chosen a priori for the

first leg. A ConstantSpeed behavior was used to provide a

desired speed of 3 meters per second.

Simultaneously active with the Waypoint and Con-

stantSpeed behaviors is the Timer behavior. This behavior

is used to time the interval between CTD casts and was set

for a duration of 60 seconds. When the timer completes, the

Waypoint and ConstantSpeed behaviors are deactivated and

the StationKeep behavior is activated. During this period,

the MOOS sampling process lowers the CTD, takes its

measurement, and then raises the CTD. When the CTD is

fully raised, the sampling process sets the ON STATION flag

to FALSE which deactivates the StationKeep behavior and

again activates the Waypoint and ConstantSpeed behaviors

to continue to the next sampling station. When sampling

is complete for the current segment, the sampling process

computes the bearing for the next sampling segment and dy-

namically updates the Waypoint behavior. When a maximum

number of segments are completed, the ON STATION flag

is set to DONE. This activates another Waypoint behavior

programmed to return the kayak to a pickup location.

C. Experimental Results

Fig. 5(a) through 5(d) show the four segments of the

autonomous surface craft experiment launched from the

R.V. Point Sur with the goal of adaptively following the

ocean thermal gradient. The first segment was run in a pre-

determined mean direction of 270 degrees while the direc-

tions for the other three segmentss were chosen adaptively.

Each segment is shown separately for clarity due to overlap

in the vehicle track. Each red circle indicates a point where a

CTD cast was performed. As can be seen, the vehicle exhibits

a small amount of drift at each sampling station. The amount

of drift can be seen to steadily increase as the weather

worsened during this run, eventually reaching sea state three

by the final segment where the station-keeping behavior is

having a more difficult time keeping the kayak within the 20

meter outer station keeping radius. Only four segments of this

experimental run were accomplished due to limitations on the

amount of power available on the surface craft. In roughly

two days of experimentation, over 300 CTD casts were

performed with this platform, showing the robustness and

suitability of this type of craft for oceanographic sampling.

Fig. 6 shows the thermal profile of the ocean obtained

from one of the 20 meter autonomous CTD casts performed

during the adaptive surface craft run shown in Fig. 5. A well-

mixed layer of nearly constant temperature can be seen in the

first 8 meters of depth with a major thermocline occurring

between 8 meters and 10 meters. The thermocline is an area

of relatively rapid temperature change and is an important

feature for analyzing the sound velocity profile of the ocean

in a given area.
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Fig. 5. Autonomous thermal gradient following experiment on 29 August, 2006 in Monterey Bay, California. Fig. 5(a) through 5(d) show the four
segments of the autonomous surface craft experiment launched from the R.V. Point Sur with the goal of adaptively following the ocean thermal gradient.
The first segment was run in a pre-programmed mean direction while the directions for the other three segments were chosen adaptively. Each red circle
indicates a point where a CTD cast was performed. The thermal profile from a representative CTD cast from this run is shown in Fig. 6.

Fig. 7 shows the mean direction of each of the four

segments of the adaptive sampling mission. The bearings

for segments 2 through 4 were the estimated direction of

the thermal gradient as computed by the MOOS sampling

process. The changing bearings for the last three segments

show that the sparse sampling provided by the surface

craft’s winch-lowered sensor is inadequate. As the number of

samples increases, the thermal gradient direction is generally

computed to be to the southwest, in agreement with other

sampling runs. AUV simulations using real ocean data and

a sensor which can sample about every second (about 1.5

meters at the AUV’s typical speed) do not show the same

problem, with the AUV being able to pick up the correct

gradient in the same area in about two sampling legs.

VI. CONCLUSIONS

In this work we have demonstrated a method for sensor-

adaptive control of autonomous marine vehicles in an au-

tonomous oceanographic sampling scenario and shown its

suitability for controlling autonomous sensor platforms in

complex conditions where environmental conditions can

impact sampling performance. The results show that our

proposed method combining a behavior-based, multiple ob-

jective function control model with a distributed autonomy

architecture is a viable and robust method for adaptive

sampling of ocean phenomena. In complex environments

where such vehicles may have to contend with unknown

situations like obstacle avoidance, waves, current, uncer-

tain communications, and uncertain navigation while still

maintaining sensing performance, the state space for the

vehicle control is much too large for a world-model approach
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Fig. 6. Representative 20 meter CTD cast on 29 August, 2006. This figure shows the thermal profile of the ocean obtained from one of the 20 meter
autonomous CTD casts performed during the adaptive surface craft run shown in Fig. 5. A well-mixed layer of nearly constant temperature can be seen
in the first 8 meters of depth with a major thermocline occurring between 8 meters and 10 meters.
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Fig. 7. Segment bearings. This figure shows the mean direction for the
four segments of the autonomous gradient following experiment depicted
in Fig. 5. The bearing of the first segment was determined a priori and the
bearings of the final three segments were determined adaptively using the
sampled data.

and a behavior-based approach is indicated. Current plans

call for using both autonomous surface craft and AUVs for

adaptive thermal gradient following, thermocline tracking,

and front detection using both single sensor platforms and

multiple, cooperating platforms. Based on the results of this

experiment we can conclude that a surface craft with limited

power (and available time) is more suited to spot sampling of

ocean phenomenon than it is for applications which require

faster and more spatially dense sampling. A system for an

email-activated remote sampling capability is also in the

design stage which will allow an oceanographer to remotely

deploy the surface craft via email to an area of interest and

have a file of either raw or processed data sent back in real

time.
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