
 
 

 

  

Abstract— Most present localization algorithms are either 
range or vision-based. In many environments, only one type of 
sensor cannot often ensure successful localization; furthermore, 
using low-priced range sensors instead of expensive, but 
accurate, laser scanners often lead to poor performance. This 
paper proposes an MCL-based localization method that robustly 
estimates the robot pose with fusion of the range information 
from a low-cost IR scanner and the SIFT based visual 
information gathered using a mono camera. With sensor fusion, 
the rough pose estimation from range-based sensors is 
compensated by the vision-based sensors and slow object 
recognition can be overcome by the frequent update of the range 
information. In order to synchronize the two sensors with 
different bandwidths, the encoder information gathered during 
object recognition is exploited. This paper also suggests a 
method for evaluating localization performance that is based on 
the normalized probability of a vision sensor model. Various 
experiments show that the proposed algorithm can estimate the 
robot pose reasonably well and can accurately evaluate the 
localization performance.  

I. INTRODUCTION 
Localization is a method for estimating the pose of a robot 

with an environmental map and information from sensors 
mounted on the robot. Localization is a fundamental and 
important task for the autonomous mobile robot. Range 
sensors, such as laser and IR scanners have been extensively 
used for global localization. However, when only range 
sensors are employed, the estimation error of the robot’s pose 
increases when in dynamic or cluttered environments. It is 
also difficult to find an accurate robot pose when the robot is 
placed in a simple environment like a hallway. On the other 
hand, a vision sensor usually provides more information than a 
range sensor, and it provides good performance at a low cost. 
Therefore, localization using vision sensors has drawn much 
attention in recent years. However, most algorithms on 
vision-based localization suffer from shortcomings in that 
their implementation takes longer than range-based 
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localization because of the computation time needed for 
extracting feature information from the camera image. 

In the past decade, substantial efforts have been directed 
toward the development of vision-based global localization. 
In topological Markov localization [1], the input image was 
compared to the images stored at each node of a topological 
map and then the node at which the robot was located was 
found by Markov localization. In this method, however, it is 
difficult to get an accurate robot pose if the robot is between 
nodes. Markov localization uses the ceiling information [2] 
[3], which led to successful localization even when people 
surrounded the robot. However, in an environment with a low 
ceiling, the robot could not collect sufficient information for 
localization from the camera image because it covered only a 
small portion of the ceiling. A Vision-based SLAM was 
proposed that used the Scale Invariant feature transform 
(SIFT) algorithm [4] based on a stereo vision [5] [6]. This 
approach required a large amount of memory because it must 
store all keypoints of the entire environment and it uses three 
cameras (a mono camera and a stereo camera). 

Localization using relatively cheap sensors is important 
from a practical point of view, but localization with 
low-priced sensors seldom provides good localization 
performance in various environments due to inaccurate sensor 
measurements. Either the range-based or vision-based scheme 
alone cannot overcome these sensor limitations; therefore, 
sensor fusion based localization should be implemented to 
compensate for shortcomings of each sensor. This paper 
proposes the global localization algorithm based on the the 
fusion of the range information from a low-cost IR scanner 
and the visual information from a mono camera. The proposed 
localization scheme is mainly based on the Monte Carlo 
Localization (MCL) algorithm [7]. Dependable navigation is 
possible since the relatively poor range accuracy from an IR 
scanner can be compensated through vision-based localization 
and slow object recognition can be overcome by the frequent 
update of the range information.  

One problem involved in the fusion of range and visual data 
is their different processing times. That is, the range 
information has a higher update rate than the visual 
information because object recognition based on SIFT feature 
extraction requires a long computation time, especially when 
the object has many features. In this paper, the data from the 
two sensors are synchronized by compensating for the time 
delay caused by the slow vision-based localization by using 
the encoder information.  
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Another issue of global localization is the evaluation of 
localization performance. The capability of detecting and 
recovering from localization failure is essential for 
autonomous navigation, because no localization algorithm 
guarantees its success at all times. The MCL algorithm uses 
random samples to cope with the kidnapped robot problem 
and localization failure [8], but if the number of random 
samples is not sufficient, the time required to detect 
localization failure may be quite long. This paper proposes a 
scheme that evaluates the localization performance based on 
the normalized probability of the vision sensor model. If the 
localization performance is regarded as localization failure, 
then the proposed scheme can recover the robot pose using the 
recognized object. 

The remainder of this paper is organized as follows: Section 
II presents the vision sensor model and the range sensor model. 
Section III presents the fusion of the two sensor models for 
MCL. Section IV shows the detection and recovery from 
localization failure. Finally, conclusions are outlined in 
section V. 

II. SENSOR MODELS 
In this research, the range and vision sensors are fused 

together for improved localization of a mobile robot. Instead 
of a laser scanner, which is very accurate but expensive, an IR 
scanner is used as the main range sensor. The IR scanner 
generates a vector of 121 range values with a resolution of 1.8o. 
An inexpensive mono camera is also employed as the main 
vision sensor instead of a stereo camera, which is expensive 
but can provide range information. Objects are recognized by 
the well-known SIFT algorithm to extract the visual features. 
The sensor model for each sensor is required for probability 
update of random samples (i.e., candidates for the robot pose) 
used in MCL.  

A. Range sensor model 
In the range sensor model, the probability of samples is 

updated according to the difference between the range data 
measured by the IR scanner and those computed from the 
sample pose on the map, as shown in Fig. 1. That is, if the 
robot pose at time t is denoted as xt, the probability of sample 
i (i = 1, …, N) is updated by 
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where zt(k) represents the k-th value of the range data 
measured at time t (k = 1, .., 121), and dt

(i)(k) is the k-th value 
of the range data computed from sample i on the map. 
Although the IR scanner provides a total of 121 range data, 
only the data less than 4m (kt is the total number of such data) 
are used in Eq. (1) because the data exceeding 4m are found to 
be incorrect. 

 

 
Fig. 1 Range data; (a) measured by the actual sensor, and (b) computed from 
candidate robot pose.  

B. Vision sensor model 
In the vision sensor model, the probability is updated 

according to the difference between the measured range and 
angle to the recognized object and those computed from the 
samples on the map. The center of the object is selected as a 
point representing this object because the object has its own 
image size on the image plane. The relative range and angle 
from the robot to the object are extracted with respect to this 
center point. Therefore, robust and accurate extraction of the 
center point of the recognized object is very important in 
minimizing the localization error. The following affine 
transform, which calculates the geometrical relations between 
the recognized object and the object stored in the database, is 
used to extract the accurate center point [4]. 
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where the vector [tx, ty]T is associated with the translation and 
the parameter mi (i = 1, .., 4) with the 3D rotation. The vector 
[xi, yi]T is the keypoint relative to the image stored in the 
database, and [ui, vi]T is the keypoint extracted in the current 
image, as shown in Fig. 2. 
 

  
Fig. 2 Example of affine transform. 
 

Equation (2) is rearranged to compute the 6 parameters as 
follows: 
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The parameters can be computed by inversion of the 6 by 6 
matrix if only 3 pairs of matched keypoints are given, as 
shown in Fig.2. For more than 3 pairs, the pseudo inverse 
matrix is used to yield the 6 parameters. Once the parameters 
are identified, the center point of the recognized object, (uc, 
vc), can be computed by Eq. (2) from that of the object in the 
database, (xc, yc).  

To obtain the relative angle to the recognized object from 
the robot, we need to transform the extracted center point of 
the object relative to the image plane into that in the robot 
frame. This angle at time t, denoted as θt

obj, is given by 
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Fig. 3 Extraction of visual feature; (a) the center point of the object in the 
image, (b) detection range of IR scanner. 
 
where (xr, yr) of Fig. 3(a) represents the robot frame;  uc is the 
coordinate of the center point relative to the image frame, 
wimage is the number of pixels (e.g., 320 pixels) of the image 
plane in the u axis of the image frame, and  θfov is the camera’s 
field of view. 

In this research, the IR scanner is used to compensate for 
the mono camera’s inability to provide the range information. 
As shown in Fig. 3(b), the camera’s field of view is always 
included in the scanning range of the IR scanner. Therefore, 
the range reading corresponding to the angle θt

obj is used as the 
range to the object’s center point. A more accurate range value 
can be obtained by interpolating between the two adjacent 
range data that are separated by an angle of 1.8o, which 
happens to be the resolution of an IR scanner. 
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Fig. 4 Range and relative angle to the recognized object; (a) measured from 
the robot, and (b) computed from sample i.  
 
In the vision sensor model shown in Fig. 4, the range (dt

obj) 
and relative angle to the recognized object from the robot 

(θt
obj), are compared with dt

(i)
 and θt

(i), which are the range and 
relative angle to the object from the robot computed from 
sample i on the map, respectively. Based on the difference 
between the measured and the computed results, the 
probabilities are updated as follows: 
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where )|()(

tt
i

d xzp  and )|()(
tt

i xzpθ  are the probabilities 
associated with the respective range and relative angle, and ηr 
and ηθ are the normalizing constants for the range and angle, 
respectively. Each sensor model has a Gaussian distribution 
with the mean of dt

obj and θt
obj, and a variance of 2

dσ  and 2
θσ . 

For each sensor model, the overall vision sensor model is 
given by 
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III. FUSION OF RANGE AND VISION SENSORS 
Vision-based localization can generally give more effective 

localization performance than range-based localization 
provided there are many objects with visual features in the 
environment. However, because only a small number of 
objects can be used as visual features in normal indoor 
environments, vision-based localization alone is not sufficient 
to provide satisfactory localization performance in most 
environments. Thus, if the recognized objects cannot be found 
at the current robot pose, only the range sensor model can be 
used to update the probability of samples as follows: 

 
)|()|( ttirtt xzpxzp =               (8)  

 
where pir(zt|xt) is the range sensor model given by (1). If the 
vision sensor recognizes any object, the range sensor model 
and the vision sensor model are fused to update the probability 
of samples. 
 

)|()|()|( ttirttvtt xzpxzpxzp =                                (9) 
 
where pv(zt|xt) is the vision sensor model given by (7).  

It is important that the data from the IR scanner and the 
vision sensor are fused in a synchronous fashion. However, in 
contrast to the relatively fast response of an IR scanner, 
vision-based object recognition often requires a rather long 
processing time. Due to this delay, the information obtained 
upon completion of the object recognition actually reflects the 
environment information at the beginning of object 
recognition. For synchronization purposes, the range data 
measured at the start of object recognition must be fused with 
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the visual data at the end of object recognition, as shown in Fig. 
5. As the processing time for object recognition increases, 
several sets of recent range data should be discarded for 
synchronization with the vision data, as shown in Fig. 5. Thus, 
the overall update rate of the sample probability becomes low, 
which leads to an increasing failure rate of localization due to 
lack of the most recent environment information. 

 

  
Fig. 5 Sensor fusion with loss of range information. 

 
In order to cope with this problem, the range data and the 

vision data are used separately in this research. That is, the 
range data continue to be used to update the probability of the 
samples while object recognition is in process. Sensor fusion 
is conducted only when object recognition is completed and 
the visual data are available. 
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Fig. 6 Relation between robot pose and object when object recognition starts 
and finishes. 

 
As shown in Fig. 6, the observation ),( obj

t
obj
td θ obtained at 

the end of object recognition is actually based on the previous 
robot pose because the robot is moving while object 
recognition is in process. Therefore, this observation must be 
compensated to reflect the current robot pose. This 
compensation can be performed using the encoder data, by 
assuming that a change in the robot pose estimated by the 
encoder data over a short period of time is relatively accurate. 
This compensation based on the encoder data is applied to all 
samples, as shown in Fig. 7(d).  
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Fig. 7 Prediction of relation between robot pose and object using encoder 
data at the end of object recognition. 

 

The uncertainty in the encoder data should be considered in 
computation of )ˆ,ˆ( obj

t
obj
td θ  as follows. 
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where σd  and σθ are the respective uncertainties in the range 
and the relative angle measured by the vision sensor, and ∆d 
and ∆θ are the translational and rotational motion of the robot 
during its object recognition, respectively. The parameters, α1 
and α2 associated with d̂σ , and α3 and α4 with θσ ˆ , depend on 

the characteristics of the robot. These parameters depend on 
the robot. In the real experiments, σd and σθ were set to 0.2m 
and 3°, respectively. The parameters α1, α2, α3  and α4 were set 
to 0.1, 0.2m/deg, 0.5°/m and 2° respectively. It is noted that 
the uncertainty d̂σ  and θσ ˆ  increase with an increase in ∆d 

and ∆θ. 
 

  
Fig. 8 Sensor fusion without loss of sensor information. 

 
Various experiments were performed using a robot 

equipped with an IR scanner (Hokuyo PBS-03JN) and a mono 
camera (a normal web camera). As shown in Fig. 9(a), the 
experimental environment was 15m x 80m and consisted of a 
long hallway and several doors. The grid size of the grid map 
was 10cm. Figure 9(b) illustrates the objects used as visual 
landmarks for localization, and their positions are shown as 
red dots in Fig. 9(a). 

 

 
(a) 

 
(b) 

Fig. 9 (a) global map of experimental environment, and (b) objects used as 
visual landmarks. 

 
11 visual landmarks were used in the experiments for global 

localization and were carried out in a room and a hallway. 
When the robot navigates through a hallway, the information 
from the range sensor is not sufficient for successful 
localization, which often leads to slow convergence of the 
samples. 5,000 samples were initially distributed throughout 
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the entire environment and these samples were converged to a 
small local area by continuously updating the probability of 
samples using the sensor information. Localization was 
determined to be completed once the sample variances 
become smaller than the pre-determined thresholds. 

 

Fig. 10 Variance of sample position in x, y axis and θin localization; (a) room, 
(b) hallway. 

 
Suppose the robot was placed at a room at the beginning of 

MCL. As shown in Fig. 10(a), the sample variances converge 
to zero and thus the estimated robot pose can keep track of the 
actual pose reasonably well because enough environmental 
information can be obtained only from only the range sensor if 
a  robot is located in a room. However, if the vision data are 
fused with the IR scanner data, the sample variances converge 
to zero more rapidly than with only the range data. In the 
fusion-based localization, fast convergence can be achieved 
once the objects are visually recognized. Note that the 
variance associated with the y-axis (i.e., along the hallway) is 
much larger than that with the x-axis because the range data in 
the y-axis is quite uncertain due to the limitations of the range 
sensor (4m in this experiment). 

If a robot is located at a hallway at the beginning of MCL, 
the localization performance is generally worse than when a 
robot being is in a room. First of all, few geometric features 
can be collected by the range sensor because the geometric 
information in the hallway is quite similar from place to place. 
Furthermore, the IR scanner has a relatively short measuring 
range and the sample variances associated with the y-axis do 
not converge satisfactorily, sometime they diverge as shown 
in Fig, 11(b). Even in this case, however, if sensor fusion is 
conducted for localization, a better convergence of the sample 
variances can be achieved, thus resulting in successful 
localization.  

In the proposed method of sensor fusion, the probability 

update of samples becomes more efficient in that all the data 
from the range and vision sensor can be used without any loss 
of data. In addition, the data from the vision sensor is the range 
and relative angle to the object from the robot. Therefore, if 
only the vision sensor is used to find the robot pose, at least 
two objects must be observed. With fusion of the vision sensor 
and range sensor, however, it is possible to find the robot pose 
even when only one object is recognized. 

IV. RECOVERY FROM LOCALIZATION FAILURE 
If the gap between the given environment map and the 

sensor information becomes large in the localization of a 
mobile robot, the random samples in MCL can converge to 
give incorrect poses or divergence, thus resulting in 
localization failure. Other sources of localization failures are 
caused by inaccurate encoder data due to slippage during 
navigation and the kidnapped robot problem. In case of 
localization failure, it is important to detect this failure and 
recover from it for dependable navigation. 

To evaluate localization performance, the probabilistic 
vision sensor model, explained in section II, is adopted in this 
research. The probability associated with the vision sensor 
model depends on the uncertainty d̂σ  and θσ ˆ  given by Eq. 

(10). It is difficult to select a fixed probability threshold to 
determine whether localization is successful because these 
uncertainties change at the end of each iteration of MCL. 
Therefore, a new criterion to evaluate the localization 
performance is proposed in this research. 

Figures 11(a) and (c) depict the probability distribution 
associated with the range to the visual object. Both 
distributions are Gaussian with a mean of 2m, but their 
standard deviations (representing the uncertainty) are set to 
0.2m for Fig. 11(a) and 0.4m for Fig. 11(c). Figure 9(e) and 
(g) depict the probability distribution associated with the 
relative angle. Both are Gaussian with a mean of 0°, but their 
standard deviations are 3° for Fig. 11(e) and 5° for Fig. 11(g). 
Figures 11(b), (d), (f) and (h) represent the probability 
distributions normalized by their respective maximum 
probabilities (indicated as a red dot in Fig 11(a), (c), (e) and 
(g)). 

The evaluation of localization performance is illustrated in 
Fig. 11(b), (d), (f) and (h). Localization performance or 
quality can be classified into three cases. Case A, 
corresponding to the upper 30% of the normalized probability 
distribution, is regarded as successful localization. Case C, the 
lower 30%, is recognized as localization failure and the 
remainder, case B, is classified as a warning. For instance, 
suppose the computed range and angle are given by 2.3m and 
10° from the sensor model given in Fig. 11(c) and 11(g), 
which corresponds to the normalized probability of 0.75 and 
0.13, respectively. In this situation, localization is judged as a 
failure, because the normalized probability associated with the 
angle falls into region C even though the probability 
associated with the range is in region A.  
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Fig. 11 Decision of the localization performance based on vision with 
uncertainty: (a), (c), (e) and (g) are the probability distributions of a visual 
feature, (b), (d), (f) and (h) are normalized probabilities and the localization 
performance, A: successful localization, B: warning, C: localization failure. 

 

Judgment of localization failure requires that the 
normalized probability falls in region C 3 times in a row in 
order to avoid misjudgment due to false-matching in the 
object recognition based on SIFT features. Also, if the 
normalized probability falls into region B 10 times in a row, 
then localization is considered to fail. 

The proposed algorithm for vision-based recovery from 
localization performance was investigated through various 
experiments. Figure 12 shows recovery from localization 
failure using the normalized probability. Once the robot is 
aware of a localization failure, it wanders to collect visual data 
while the range-based localization is in process. If an object is 
recognized by the vision sensor, it is needless to distribute the 
random samples for MCL on the entire empty area of the 
environment because the position of the recognized object can 
be approximated from the map information. As shown in Fig. 
12(b), samples are mainly drawn near the circle with a radius 
of the measured range and centered at the recognized object. 
Obviously, this sample distribution is more efficient in 
localization than the uniform distribution covering the entire 
environment. Although visual features are rare in some 
environments, vision-based recovery of the robot pose is 
efficient and robust provided that visual features are available. 

 

obj
td̂

 
Fig. 12 Recovery from localization failure; (a) detection of localization 
failure, (b) distribution of samples near recognized visual feature, and (c) 
recovery of robot pose.  

V. CONCLUSIONS 
This paper proposes an efficient sensor fusion based 
localization algorithm, in which an IR scanner and a cheap 
web camera are used. From this research, the following 
conclusions have been drawn. 
 
1) Sensor fusion based localization proposed here enables the 

samples in MCL to converge to the actual robot pose faster 
than either range-based or vision-based localization alone. 

 
2) Although the processing time for object recognition takes a 

long time and is not periodic, the probability of samples can 
be updated at the speed of a range sensor using the 
proposed method. 

 
3) The proposed algorithm for the evaluation of localization 

performance based on the vision sensor model works well 
to detect localization failure and recover from it. 

 
Currently, research on the improvement in the accuracy and 

speed of the object recognition algorithm is under way. 
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