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Abstract— This article addresses the problem of generating
timed trajectories and temporally coordinated movements for
two wheeled vehicles, when relatively low-level, noisy sensorial
information is used to steer action. The generated trajectories
have controlled and stable timing (limit cycle type solutions).
Incoupling of sensory information enables sensor driven termi-
nation of movement. We build on a previously proposed solu-
tion in which timed trajectories and sequences of movements
were generated as attractor solutions of dynamic systems. We
present a novel system composed of two coupled dynamical
architectures that temporally coordinate the solutions of these
dynamical systems. The coupled dynamics enable synchroniza-
tion of the different components providing an independence
relatively to the specification of their individual parameters.

We apply this architecture to generate temporally coordi-
nated trajectories for two vision-guided mobile robots in a
non-structured simulated environment, whose goal is to reach a
target within a certain time independently of the environment
configuration or the distance to the target. The results illustrate
the robustness of the proposed decision-making mechanism
and show that the two vehicles are temporal coordinated: if
a robot movement is affected by the environment configuration
such that it will take longer to reach the target, the control
level coordinates the two robots such that they terminate
approximately simultaneously.

I. INTRODUCTION

Trajectory planning has been extensively studied over

the last few years, ranging from the addition of the time

dimension to the robot’s configuration space [1], visibility

graph [2], cell decomposition [3] or neural networks [4].

There are several results for time-optimal trajectory planning

[5].

Despite the efficient planning algorithms that have been

developed and the advances in the control domain which

validated dynamic, robust and adaptive control techniques,

the path planning problem in autonomous robotics remains

separated in theory from perception and control. This sep-

aration implies that space and time constraints on robot

motion must be known before hand with the high degree

of precision typically required for non-autonomous robot

operation. In order to develop autonomous robot systems

capable of operating in changing and uncertain environments

it is required a tight coupling of planning, sensing and

execution.

However, timing is more difficult to control when it must

be compatible with the requirement of continuous coupling

to sensory information. Some approaches have addressed this

issue [6], but timing was not fully explored.
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In this article, we propose an approach fully formulated

in terms of nonlinear dynamical systems which lead to a

flexible timed behavior stably adapted to changing online

sensory information. Dynamical systems have various desir-

able properties which makes them interesting and powerful

for trajectory generation. See [7], [8], [9], [10], [11], [12] for

related work. First, the structural robustness of the solutions

implies intrinsic robustness against small perturbations and

noise and the possibility to fuse new inputs into the system

without completely destroying its properties. Second, the low

computation cost is well-suited for real time. Other properties

are the smooth online modulation of the trajectories through

changes in the parameters of the dynamical systems; the

possibility to synchronize with external signals and to add

sensory feedback pathways. The dynamics of the system

globally encode a task (i.e. the whole attractor landscape)

with the goal state as the point attractor. This is a ”always

online” property, i.e., once a task is encoded into a dynamical

system (e.g. learning) it will be always active, and no discrete

trials are needed. Once properly designed, the dynamical

system can be robust enough against perturbations and able

to smoothly recover from perturbations by means of coupling

terms in the dynamics. Another particularity is that these

systems produce coordinated multidimensional rhythms of

motor activity, under the control of simple input signals. Such

systems are deemed to strongly reduce the dimensionality of

the control problem.

We build on previous work [13], [11], [14], where

we proposed a dynamical system architecture that gen-

erated timed trajectories, including rhythmic and discrete

movement, movement sequences and temporally coordinated

movements. The model consists of a dynamical system

composed of stable fixed points and a stable limit cycle

(an Hopf oscillator). Trajectories are generated through the

sequencing of these primitives, in which the limit cycle

is activated over limited time intervals. This sequencing is

controlled by a “neural” competitive dynamics. By control-

ling the timing of a limit cycle, the system performs well

tasks with complex timing constraints. The online linkage

to noisy sensorial information, was achieved through the

coupling of these dynamical systems to time-varying sen-

sory information [14], [13]. In [13], this architecture was

implemented in a real vehicle and integrated with other

dynamical architectures which do not explicitly parameterize

timing requirements. In [11], we have generated temporally

coordinated movements among two PUMA arms by coupling

two such dynamical systems.

In this work, coordination is modeled through mutual
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coupling of such dynamical systems. This coupling enables

to achieve temporal coordination and synchronization of the

different systems, providing an independency relatively to

the specification of their individual parameters. Specifically,

we address the following questions: Can the temporal coordi-

nation among different degrees-of-freedom (dofs) be applied

to the robotics domain such that a tendency to synchronize

among two vehicles is achieved? Can the applied dynamical

systems approach provide a theoretically based way of tuning

the movement parameters such that it is possible to account

for relationships among these?

These questions are positively answered and shown in

exemplary simulations in which two low-level vehicles must

navigate in a simulated non-structured environment while

being capable of reaching a target in an approximately

constant time. For each robot, target position is internally

acquired by a visual system mounted over the robot and

robot velocity is controlled such that the vehicle has a fixed

time to reach the target while continuously avoiding sensed

obstacles in its path. The two robot movements are coupled in

time such that if the two movements onsets are not perfectly

simultaneous or if their time trajectories are evolving differ-

ently (one is going faster/slower than the other), leading to

different movement times (time it takes to reach the target),

this coupling coordinates the two movements such that they

terminate approximately simultaneously.

Interesting properties of the system include: 1) the pos-

sibility to include feedback loops in order to do online

trajectory modulation and take external perturbations into

account, such that the environmental changes adjust the

dynamics of trajectory generation; 2) online modulation of

the trajectories with respect to the amplitude, frequency and

the midpoint of the rhythmic patterns (discrete movements

goal), while keeping the general features of the original

movements, and 3) the coordination and synchronization

among the robots, achieved through the coupling among

the dynamics of each robot, that provides for a smooth

and an adaptive behaviour of the complete system in face

perturbations in the sensed environment. This type of control

scheme has a wide range of applications in multi-dimensional

control problems.

It is our belief that planning in terms of autonomous non-

linear attractor landscapes promises more general movement

behaviours than traditional approaches using time-indexed

trajectory planning. Further, by removing the explicit time

dependency one can avoid complicated ’clocking’ and ’reset

clock’ mechanisms.

In the rest of the article, we will first present the dynamical

systems approach and discuss the intrinsic properties. In

the next section, we describe the two designed dynamical

systems that act at different levels: one acting out at the level

of heading direction and the other controlling the robot’s

velocities. In this section, it is also described the vision

system. We then described the simulation environment for

the application (Section 3). In section 4, we present two

simulations and our results and discuss the properties of

the system. We conclude by presenting the conclusions and

presenting future directions for the work (section 5).

II. THE DYNAMICAL SYSTEMS TRAJECTORY GENERATOR

In this section we describe the dynamical system archi-

tecture that generates timed trajectories. First, we describe

the dynamical systems composed of stable fixed points

and a stable limit cycle (an Hopf oscillator). Second, the

“neural” dynamics that control the sequencial activation of

these dynamic primitives is described. The solutions of these

dynamical systems are temporally coordinated through the

coupling of these architectures. Finally, we discuss some

relevant properties of the overall system that enables to

achieve generation and temporal coordination of complex

movements.

A. Fixed points and limit cycle solutions generator

A dynamical system architecture generates timed trajec-

tories for a relevant robotic variable as described in [13].

Specifically, timed trajectories are modeled as time courses

of behavioral variables (m,n) which are stable solutions of

dynamical systems. Although only the variable, m, will be

used to set the robotic variable, a second auxiliary variable,

n, is needed to enable the system to undergo periodic motion.

We set two spatially fixed coordinates systems each cen-

tered on the initial robot position: one for the x and the other

for the y spatial coordinates of robot movement. A dynamical

system which generates both stable oscillations (limit cycle

solutions) and two stationary states [11], [13], is defined for

each of these fixed coordinate systems as follows:
(

ṁi

ṅi

)

= 5 |uinit,i|

(

mi

ni

)

+ |uhopf,i|fhopf,i

+ 5 |ufinal,i|

(

mi − Aic

ni

)

+ gwn, (1)

where the index i = x, y refers to dynamics of x and y
spatial coordinates of robot movement. A neural dynamics

controls the switching between the three regimes through

three “neurons” uj,i (j = init, hopf, final). The “init” and

“final” contributions generate stable stationary solutions at

mi = 0 for “init” and Aic for “final” with ni = 0 for both.

These states are characterized by a time scale of τ = 1/5 =
0.2.

Herein, an approach is defined to achieve temporal coordi-

nation among the two robots, by coupling these two architec-

tures in a way that generates phase-locking (synchronization)

in the oscillation regime. This was achieved by modifying the

“Hopf” contribution that generates the limit cycle solution as

follows:

fhopf,i =

(

α −ω
ω α

)( (
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Aic

2

)

ni

)

− γi

(

(
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2

)2

+ n2
i

)

( (

mi −
Aic

2

)

ni

)

+ c|uhopf,j|

(

cos θij − sin θij

sin θij cos θij

)(

mj

nj

)

(2)

where index j refers to index i time courses of the coupled

dynamical system (the other robot), γi = 4 α
A2

ic

defines
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amplitude of Hopf contribution and θij is the desired relative

phase among oscillators i and j (−θij among oscillators j
and i). For instance, (mx, nx) of robot 1 is coupled with

(mx, nx) of robot 2. The coupling term is multiplied with the

neuronal activation of the other system’s Hopf state so that

coupling is effective only when both components are in the

oscillation regime. Because we want both coupled dynamical

systems to be in-phase we set θij = 0 degrees.

This “Hopf” contribution provides a stable periodic solu-

tion (limit cycle attractor) with cycle time T = 2π
ω

= 20s.

We use it because it can be completely solved analytically,

providing complete control over its stable states. This an-

alytical specification is an innovative aspect of our work.

Relaxation to the limit cycle solution occurs at a time scale

of 1/(2 α) = 0.2 time units.

The dynamics of (1) are augmented by a Gaussian white

noise term, gwn, that guarantees escape from unstable states

and assures robustness to the system.

B. Neural dynamics

The “neuronal” dynamics of uj,i ∈ [−1, 1] (j =
init, final, hopf) switches the dynamics from the initial and

final posture states into the oscillatory regime and back. The

competitive dynamics are given by

αuu̇j,i = µj,iuj,i − |µj,i|u
3
j,i − 2.1

∑

a6=j

u2
a,iuj,i + gwn. (3)

where “neurons” can go “on” (=1) or “off” (=0). This dynam-

ics enforces competition among task constraints depending

on the neural “competitive advantages” parameters, µi. The

neuron, ui, with the largest competitive advantage, µi > 0,

is likely to win the competition, although for sufficiently

small differences between the different µi values multiple

outcomes are possible (the system is multistable).

In order to control switching, the µi parameters are

explicitly designed as functions of user commands, sensory

events, or internal states and control the sequential activation

of the different neurons (see [11], for a general framework

for sequence generation based on these ideas). We vary

the µ-parameters between the values 1.5 and 3.5: µi =
1.5 + 2bi, where bi are “quasi-boolean” factors taking on

values between 0 and 1 (with a tendency to have values either

close to 0 or close to 1). Hence, we assure that one neuron

is always “on”. Herein, the time, t, and target location,

fully control the neural dynamics through the quasi-boolean

parameters. A sequence of neural switches is generated by

translating sensory conditions and logical constraints into

values for these parameters (see [13] for a description).

The time scale of the neuronal dynamics is set to a

relaxation time of τu = 0.02, ten times faster than the

relaxation time of the (m,n) dynamical variables. By using

different time scales one can design the several dynamical

systems separately [13].

Temporally discrete movement is autonomously generated

through a sequence of neural switches such that an oscillatory

state exists during an appropriate time interval of about a

half-cycle. This approximately half-cycle is movement time

(MT), here MT = 10s.

C. Intrinsic properties of the overall dynamics

The fact that timed movement is generated from attractor

solutions of nonlinear dynamical systems leads to a number

of desirable properties for trajectory generation. The system

is able to make decisions such that it flexibly responds to

the demands of any given situation while keeping timing

stable. Intrinsic stability properties are inherent to the Hopf

oscillator, which has a structurally stable limit cycle. Thus,

the generated trajectories are robust to the presence of noise

and stable to perturbations. This property is specially useful

for adding feedback pathways because sensory information

is forgotten as soon as it disappears from the environment.

This structural robustness of solutions further guarantees the

stability and controllability of the overall system if the time

scale separation principle is obeyed. These intrinsic prop-

erties, including bifurcation and hysteresis, enable planning

decisions to be made and carried out in a flexible, yet stable

way, even if unreliable sensory information is used to steer

action. These properties are explained in more detail in [13].

An advantage of this approach is that it is possible to

parameterize the system by analytic approximation, which

facilitates the specification of parameters. Not only we have

generated discrete movement as well as we provide a the-

oretically based way of tuning the dynamical parameters to

fix a specific movement time or extent. Smooth trajectory

online modulation of the trajectories with respect to the goal,

amplitude and frequency is now possible, while keeping the

general features of the original movements. Trajectories are

thus modulated according to the environmental changes, such

that action is steered by online modulation of the parameters.

A simple modulation of the parameters can generate an

infinite variation of stable trajectories.

Moreover, we showed that it was easy to couple two

dynamical systems to generate coordinated multidimensional

trajectories. The extension to a more enlarged number of

dynamical systems is feasible and brings no added com-

plications. The coordination and synchronization among the

generated trajectories, achieved through the coupling of their

dynamical systems, provides for a smooth and an adaptive

behavior of the complete system in face of perturbations in

the sensed environment. The coupling of nonlinear oscillators

offers multiple interesting properties which enable smooth

integration of their parameters and makes them interesting

and powerful for trajectory generation.

In the next section, we show the application of this

dynamical architecture to the generation of timed trajectories

for two vision-guided vehicles.

III. TIMED TRAJECTORIES GENERATION FOR TWO

VISION-GUIDED VEHICLES

The dynamical systems formulated in order to solve this

robotic problem are divided onto two integrated architectures

which act out at different levels. The dynamics of heading

direction act out at the level of the turning rate. The dynamics

of driving speed express time constraints.
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A. Attractor dynamics of heading direction

The robot action of turning is generated by letting the

robot’s heading direction, φh, measured relative to some al-

locentric reference frame, vary by making φh the behavioral

variable of a dynamical system (for a full discussion see [7]).

This behavioral variable is governed by a nonlinear vector

field in which task constraints contribute independently by

modeling desired behaviors (target acquisition) as attractors

and undesired behaviors (obstacle avoidance) as repellers

of the overall behavioral dynamics. Integration of the target

acquisition,Ftar(φh) and obstacle avoidance,Fobs(φh) con-

tributions is achieved by adding each of them to the vector

field that governs heading direction dynamics

dφh

dt
= Fobs(φh) + Ftar(φh) + Fstoch(φh). (4)

We add a stochastic component force, Fstoch, to ensure

escape from unstable states within a limited time. The

complete behavioral dynamics for heading direction has been

implemented and evaluated in detail on a physical mobile

robot [15], [13].

B. Coupling to sensorial information

Ball position is acquired by simulating a camera mounted

on the top of the robot and facing in the direction of the

driving speed. The goal is to robustly detect a red ball in an

unstructured, complex environment.

The most common algorithms for visual object tracking in

robot applications are typically based on the detection of a

particular cue, most commonly edges, color and texture [16],

[17].

In our application, we have to deal with the following

main computer-vision problems: (1) a clutter environment,

including non-uniform light conditions and different objects

with the same color pattern (distractors); (2) irregular object

motion due to perspective-induced motion irregularities; (3)

image noise and (4) a real-time performance application with

high processing time. Some of these problems may not be

a problem in a simulated environment, but they will be as

soon as we move on to a real application.

Although conventional single-cue algorithms fail to catch

variations like changes of orientation and in shape, if flexi-

bility and/or simplicity, speed and robustness are required,

as in our case, they are a good option. Specifically, we

have chosen a color based real-time tracker, Continuously

Adaptive Mean Shift (CAMSHIFT) algorithm [18], that

handles the described computer-vision application problems

during its operation.

This algorithm tracks the x′, y′ image coordinates and area

of the color blob representing the white and black ball. We

have assumed that ball size is known and can be measured

in the image. A perspective projection model transforms the

x′, y′ image coordinates onto the x world coordinates, as

follows:

x′ =
a11x + a12y + a13

a31x + a32y + 1
(5)

(a) Presence of a distractor ele-
ment

(b) Variations in lighting condi-
tions.

Fig. 1. Application of the CAMSHIFT algorithm to a real, clutter envi-
ronment, where some computer vision problems in visual object tracking
are addressed.

Herein, we illustrate two real applications of this algorithm to

a real, clutter environment. Fig. 1(a) shows the result of this

algorithm in the presence of a distractor element. In Fig. 1(b)

the incident illumination as been increased by a factor of 1.5.

In both situations, the algorithm is able to track the ball.

To simulate sensor noise (which can be substantial if such

optical measures are extracted from image sequences), we

added either white or colored noise to the image coordi-

nates. Here we show simulations that used colored noise, ζ,

generated from

ζ̇ = −
1

τcorr

ζ +
√

Q gwn (6)

where gwn is gaussian white noise with zero mean and

unit variance, so that Q = 5 is the effective variance. The

correlation time, τcorr, was chosen as 0.2 sec.

C. Velocity

Robot velocity is controlled by a dynamics similar to that

described in [15], such that the planning variable is in or

near a resulting attractor of the dynamical system most of the

time. This dynamics assures that velocity depends whether

or not obstacles are detected for the current heading direction

value. In case an obstacle has been detected, velocity is set as

Vobs, which is computed as a function of the current distance

to the obstacle [15]. In case no obstacle has been detected,

velocity is set as Vtiming:

Vtiming =
√

ṁx + ṁy , (7)

where mx,my are given by eq. 1. The path velocity, Vtiming,

of the vehicle is thus controlled through the described dy-

namical system architecture that generates timed trajectories.

In the following, we briefly explain the dynamic architec-

ture behavior of each robot. At t = 0 s the robot is resting

at its initial fixed position, xRinit
, yRinit

. The robot rotates

in the spot in order to orient towards or look for the target

direction. At time tinit, timed forward movement is initiated.

The periodic motion’s amplitude, Amc, is updated during

periodic movement each time step as follows

Amc = (xtarget − xRinit
) − ((xR − xRinit

) − mx) ,(8)

where xtarget is x target position, xR is x robot position and

mx is the dynamical variable.
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The periodic solution is deactivated again when the x
vehicle position comes into the vicinity of Amc, and the final

postural state (which equals Amc) is turned on instead. The

same behavior applies for the dynamical systems defined for

the y spatial coordinate.

IV. EXPERIMENTAL RESULTS

The dynamic architecture was simulated in Mat-

lab/Simulink (product of the MATHWORKS company) and

in webots[19]. This simulator is based on ODE, an open

source physics engine for simulating 3D rigid body dynam-

ics. Each vehicle has seven infrared sensors equidistantly

mounted on a ring on the robot’s periphery, used to measure

distance to surfaces at the height of the ring. The model of

the robots are as close to the real robots as the simulation

enable us to be. Thus, we simulate the exact kinematic

equations, mass distributions, infra-red sensor and the visual

system. The dynamics of heading direction, timing, com-

petitive neural, path velocity and dead-reckoning equations

are numerically integrated using the Euler method with fixed

time step. The cycle time is 70 ms and MT is 10s.

The initial heading direction is 90 degrees. Forward move-

ment initiation is triggered by an initial time set by the

user, tinit = 3s, and not from sensed sensorial information.

Sensed obstacles do not block vision. In case the target is not

currently in the limited viewing angle of the camera but has

been previously seen, we algorithmically update the previous

target location based on dead-reckoning information.

The rotation speeds of both wheels are computed from

the angular velocity, w, and the path velocity, v of the

robot. The former is obtained from the dynamics of heading

direction. The later, as obtained from the velocity dynamics

is specified either by obstacle avoidance contribution or by

Vtiming (eq. 7). By simple kinematics, these velocities are

translated into the rotation speeds of both wheels and sent

to the velocity servos of the two motors.

In order to verify if temporal coordination among the two

robot movements is achieved we have performed several

simulations. Herein, due to space constraints, we illustrate

two exemplary simulations.

During its path towards the target, robot 2 is faced with

an obstacle which it must circumnavigate. This obstacle does

not interfere with the robot 1 movement towards the target.

Fig. 2(a) illustrates the robot motions and time stamps of

these trajectories. The ball is depicted by a light circle. Small

crosses around ball position indicate ball position as acquired

by the vision systems. The robots path are indicated by lines

formed by crosses. The interval between two consecutive

crosses indicates the robot’s path velocity since the time

acquisition interval is constant: the smaller the velocity the

closer the points. When the obstacle is no longer detected

for the current heading direction, at t = 9.1s, robot 2 is

strongly accelerated in order to compensate for the object

circumnavigation.

Robot velocities are depicted in Fig. 3. v represents

forward velocity of the robot. vtiming and vobs represent ve-

locity imposed by the discussed dynamical architecture and

(a)

0

1

0

1

0

1

0 2 4 6 8 10 12 14
0

1

Time (s)

Robot 1

Robot 1

Robot 2

Robot 2

uncoupled

coupled

uncoupled
coupled

uncoupled

coupled

uncoupled

uncoupled

(b)

Fig. 2. A simulation run where the robot meets the red ball. a) Robots
timed trajectories. b) Top and bottom panels illustrate u neural variables of
x and y coordinate dynamical systems of both robots.

velocity imposed in case an obstacle is detected, respectively.

0

0.2

0.4

0 2 4 6 8 10 12 14
0

0.5

1

1.5
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Time (s)

Robot 1

Robot 2
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timing,uncoupled

v
timing,coupled

v
uncoupled

v
coupled

v
obs

v
timing,uncoupled

v
timing,coupled

v
uncoupledv

coupled

Fig. 3. Velocity variables for robot 1 and 2.

The proposed dynamic architecture without coupling (c =
0 in eq. 2) is similar to work presented in [13], where results

have shown that robot velocity is controlled such that the

target is reached in an approximately constant time (MT =
10s) independently of the environment configuration and of

the distance to the target.

The introduction of a coupling of this form tends to

synchronize movement in the two robots. Thus, when x
and/or y movement of robot 2 is affected by the environment

configuration such that its periodic motion amplitude is

increased, robot 1 movement is coordinated through coupling

such that movements of both robots terminate simultane-

ously. This results in delayed simultaneous switch, around

t = 12.8s, among Hopf and final contributions for x and y
dynamical systems of both robots (see Fig. 2(b)). Note that

synchronization only exists when both dynamical systems

exhibit periodic motion.

Coupling two such dynamical systems removes the need

to compute exactly identical movement times for two robot

movements that must be temporally coordinated. Even if

there is a discrepancy in the movement time programmed by

the parameter, ω, of the Hopf dynamics (which corresponds

to larger MTs due to complex environment configurations),

coupling generates identical effective movement times.

One interesting aspect is that since the velocities applied

to the robots are different depending if there is coupling or
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(a) Robots trajectories.

1

1

1

0 2 4 6 8 10 12 14 16

1

Robot 1

Robot 2

Robot 1

Robot 2

coupled

uncoupled

coupled

coupled

uncoupled

coupled

uncoupleduncoupleduncoupleduncoupled

uncoupled

(b) u neural variables.

Fig. 4. In this simulation, movement on-sets are set differently for each
robot. Object circumnavigation leads to different movement times for each
robot as well.

not, this results in slightly different qualitative paths followed

by the robot.

Fig. 4(a) illustrates the robot motions and time stamps of

these trajectories towards the target, when both robots are

faced with obstacles which they must circumnavigate. These

circumnavigations lead to different movement times for both

robots. Further, movements on-sets are set differently: robot

1 starts its movement at tinit = 3s and robot 2 starts

its movement at tinit = 1.5s. The coupling coordinates

the two movements such that they terminate approximately

simultaneously (see fig. 4(b)).

V. CONCLUSION/OUTLOOK

In this article, an attractor based dynamics autonomously

generated temporally discrete and coordinated movements.

The task was to temporally coordinate the timed movements

of two low-level vehicles, which must navigate in a simulated

non-structured environment while being capable of reaching

a target within a certain time independently of the envi-

ronment configuration. Movement termination was entirely

sensor driven and autonomous sequence generation was sta-

bly adapted to changing unreliable simulated visual sensory

information. We applied autonomous differential equations

to formulate two integrated dynamical architectures which

act out at the heading direction and driving speed levels of

each robot. Each robot velocity is controlled by a dynamical

systems architecture based on previous work [13], which

generates timed trajectories. Temporal coordination of the

two robots is enabled through the coupling among these

architectures.

Results enable to positively answer to the two questions

addressed in the introduction. The former asked if syn-

chronization among two vehicles can be achieved when we

apply temporal coordination among dofs. Results illustrate

the dynamic architecture robustness and show that such a

coupling tends to synchronize movement in the two robots,

a tendency captured in terms of relative timing of robots

movements. The later question asked if the applied approach

provides a theoretically based way of tuning the movement

parameters such that it is possible to account for relationships

among these. Results show that the coupled dynamics enable

synchronization of the robots providing an independence

relatively to the specification of their individual movement

parameters, such as movement time, movement extent, etc.

This synchronization reduces computational requirements for

determining identical movement parameters across robots.

From the view point of engineering applications, the inherent

advantages are huge, since the control system is released

from the task of recalculating the movement parameters of

the different components.
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