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Abstract— This paper discusses the design and current ca-
pabilities of a new software tool, dVC, capable of simulat-
ing planar systems of bodies experiencing unilateral contacts
with friction. Since different problems require different levels
of accuracy, dVC provides user-selectable body types (rigid
or locally-compliant), motion models (first-order, quasi-static,
dynamic), and several state-of-the-art time-stepping methods.
One can also choose to include friction between each body
and the plane of motion. To support optimal and robust part
design, dVC also allows on-the-fly changes to parameters of
the geometric and physical models. The results obtained for
three representative planar problems are presented: the design
of a passive part-orienting device, the planning of a meso-scale
assembly operation, and the design of a grasp strategy.

I. INTRODUCTION

This paper discusses a new software tool, dVC, that
was designed to facilitate simulation, analysis, and virtual
design of multibody systems with intermittent unilateral con-
tacts with dry friction. Understanding the dynamics of such
multibody systems is central to many fundamental problems
in robotics including grasping, manipulation, walking and
assembly. However, these systems are notoriously difficult
to simulate accurately due to the nonsmooth nature of the
underlying mathematical model. In fact, commercial soft-
ware for simulating multibody systems with unilateral con-
tacts and dry friction (DADs, Adams, Working Model) deal
with the nonsmoothness by ad hoc regularization methods
(e.g., penalty methods to remove unwanted interpenetration
of bodies by local nonlinear spring and damper effects).
These methods require tuning of simulation parameters and
the algorithms often have no guarantees on stability and
convergence.

In contrast, dVC uses state-of-the-art time-stepping meth-
ods designed to capture the nonsmooth phenomena (stick-
slip transitions and contact loss and formation) without reg-
ularization. In these methods, each time-stepping subproblem
is formulated as a complementarity problem [1]-[3]. These
methods are numerically stable and provably convergent. In
particular, it has been proven that when the Stewart-Trinkle
(ST) and Song-Pang-Kumar (SPK) methods are applied to
dynamic systems, as the step size goes to zero, the trajec-
tories produced by the time-steppers converge to the exact
solution of the original instantaneous-time model. This con-
vergence property has been available for solvers for ordinary
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differential equations and differential algebraic equations for
some time, but only recently for some constraint-based time-
stepping methods. Further, work in progress shows that under
reasonable modeling assumption, it is possible to obtain
sensitivity information on the trajectories, which is critical
if we want to use the simulator for developing planning
algorithms or for design optimization.

dVC allows the user to choose between different motion
models. It allows comparison and validation of multibody
modeling choices (e.g., one chooses to use a quasistatic
model, but should have chosen a dynamic model). Second,
it enables a hierarchical and iterative approach to design
processes. As an example, consider the design of a part
feeder (also discussed later). Geometric and dynamic pa-
rameters are critical to the functioning of the device and
there are many parameters (e.g., coefficients of friction) that
are characterized by uncertainty. We would like to be able
to consider only the geometry initially to prune the design
space eliminating large sets of geometric parameters that
render the design infeasible. This can be done by simple
geometric models. We then want to be able to refine the
design space with quasi-static models, and then using more
expensive dynamic models. Thus we can use low-resolution
models to quickly eliminate many design alternatives using
more complicated models characterized by many unknown
parameters to search over a smaller set of feasible designs.

II. SIMULATION OVERVIEW

dVC consists of several modular components (plugins) that
have been written in such a way that they can be extended
and replaced at runtime based on the desired configuration.
Figure 1 gives a high level view of the components of dVC.
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Fig. 1. daVinci Code Architecture.
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The main function of the library is to provide the API
(Application Programming Interface), which is our defined
set of calling conventions. The library acts as the central
controller organizing calls to the plugins, which in turn do
the actual physics simulation work.

The Collision Detection module fulfills the collision de-
tection requirements of the currently active time-stepping
plugin. In addition, it implicitly defines a geometric model;
dVC currently supports both polygonal and implicit body
surfaces. The TimeStepper plugin formulates the equations
of motion of all bodies in the system as a complementarity
problem. The Solver plugin solves the complementarity
problem. During simulation, an example time step consists
of the following actions:

1) call collision detection plugin with the current scene

2) call the time-stepper plugin with the results of the
collision detection plugin

3) call the solver plugin with the complementarity prob-
lem formulated in the time-stepper plugin

4) Update the bodies with the result of the solver plugin

dVC includes two collision detection plugins. The first
plugin is a modified version of the PQP collision detection
library (Section III-B) and is suitable for polygonal surfaces.
The second plugin is appropriated for implicit surfaces and
uses a super-ellipse collision detection algorithm [4].

Step 2 includes a collision response model that requires
the determination of the exact time of impact. There are two
ways to determine this “time-of-impact.” In the first method,
the time-stepper plugin uses the collision detection results,
and if penetration has occurred the module can “back-up”
the simulation time and decrease the step size. The second
technique for implementing a collision response is for the
time-stepper plugin to analyze the “active constraint set”
(defined in Section III-B) and adaptively change the step-
size prior to collision. Once the time-of-impact has been
determined, any desired impact law can be applied. This
flexibility in allowing various implementations of the plugins
is one of the main benefits of dVC as an analysis tool.

Table (I) lists the various time stepping models, body
types, and motion models implemented. dVC supports both
2D (Section II-A) and 2.5D (Section II-B) problems. There
are several important similarities and differences between
these models. The Anitescu-Potra (AP) and Stewart-Trinkle
(ST) time-steppers assume rigid bodies and collisions are
inelastic, while the Song-Pang-Kumar (SPK) model assumes
that the bodies are locally visco-elastic near the contacts. Un-
der the SPK time-stepper, the collision response of colliding
bodies is a natural outcome of the integration process, but
time steps become extremely small for stiff bodies.

TABLE I
TIME-STEPPING ALGORITHMS AVAILABLE IN DVC

Time-Stepper Body Types Motion Models
Stewart-Trinkle Rigid First-Order, Quasi-Static, Dynamic
Anitescu-Potra Rigid First-Order, Quasi-Static, Dynamic
Song-Pang-Kumar | Quasi-Rigid Dynamic
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Lastly, since the most robust software available today
for solving complementarity problems is PATH [5], it is
embedded in our solver plugin (Section III-C).

A. 2D Dynamic Model

The dynamic equations of motion for a planar multi-body
system with frictional contacts can be written as:

M(Q)l.’ = Wn(‘]))\n +VVt(Q))\t+)\app(taQ>V) (D

where ¢ € R™ is the vector of generalized coordinates,
v € R™ is the vector of generalized velocities, M(q)
is the inertia matrix, Aypp(t,q,v) is the vector sum of all
generalized non-contact forces, A, are the n.-dimensional
vectors of contact forces in the normal (n) and tangential
(t) directions, n. is the number of (potential) contacts, and
W, and W, are the Jacobin matrices that transform the
contact forces into equivalent wrench (force and torque) in
appropriate frames. Since dVC is intended for simulation
of planar systems, ng = n, = 3n,, where n; is the
number of bodies. Further, we have the following kinematic
relationship:

q=Glq)v. )

where G(q) is a parametrization matrix relating the system
velocity to the system configuration.

Non-penetration at each (potential) contact ¢ of the bodies
is enforced by the following complementarity condition:

where 1;, (g, t) is a vector of signed distances between pairs
of body features that might come into contact and L denotes
orthogonality (i.e., Ain ¥in(q,t) = 0). Note that at least one
of ¢, and \;, must be zero for every ¢ = 1,...,n..

The last part of the model is a friction law that generates
forces opposing sliding at contacts and thus dissipates en-
ergy. All of our implemented time-stepper plugins assume
Coulomb’s Law. We denote by F(1;\in), the constraints on
the frictional force \;:

F(pirin) = [Nitl < priNin- €]

where p; is the coefficient of friction at the ¢-th contact
point. In addition, when sliding occurs, the force must lie on
the boundary of the friction cone in the direction opposing
sliding:

it = argmin {%t/\it DA € f(ﬂi)\in)} )

where ;¢ is analogous to 1;, and represents the tangential
displacement at contact .

Equations (1-5) represent the basic dynamic model of the
systems that dVC can currently simulate. However, there are
also three useful variations: the quasi-static model formed
by setting M(q) = 0, the first-order model formed by
replacing © in equation (1) with ¢, effectively creating a
generalized damper world, and a compliant model formed
by replacing the unknown contact forces A, and A with
functions of local deformations and the rates of deformations
of the bodies. In the latter case, A\, and )\; are replaced by
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unknown deformations, thus the total number of variables
does not decrease. Furthermore, the region near the contact
point can be discretized into multiple compliant contact
regions, significantly increasing the number of variables and
equations in the model, but also allowing more accurate
model of systems exhibiting material deformation near the
contact points (see [3] for details).

B. 2.5D Dynamic Model

There are many planar manipulation and assembly tasks
in which we need to model surface friction between planar
parts and a planar support surface. While this surface friction
results in planar forces, they are dependent on the normal
forces or the pressure distribution which contribute an out-
of-plane component. The 2.5D model models the out-of-
plane normal forces which do not directly play a role in
determining the motion in the plane but do influence the
frictional forces in the plane. We use the well-known model
due to Mason [6] to model dry friction and linear damping
models to model viscous friction.

III. DAVINCI CODE OVERVIEW

The next two sections outline the main aspects of dVC.

A. Bodies

In addition to force controlled bodies, dVC also supports
position controlled bodies. A position controlled body is
similar to an obstacle in that its motion is not affected by
forces, however its position over time varies and is specified
by a user supplied function.

Similarly, for force controlled bodies, a user can specify a
force controller and apply external body forces as a function
of time. This flexibility continues, allowing certain degrees
of freedom of the body to be position controlled, while others
are force controlled.

B. Collision Detection

dVC uses collision detection and distance computation in
two different ways. Under the rigid body assumption, the
formulation of a time-step problem requires knowledge of
points in contact, contact normals, and the same information
for points not quite in contact and for points that have
penetrated (due to numerical or linearization errors). In the
rigid body case, specific times and locations of collisions
are not required; nonetheless, the solution of the time-step
problem is consistent with the model at the end of the time
step. On the other hand, if the bodies are assumed to have
compliant surfaces, then distance queries must be used to
find precise times of impact between bodies. This is required
to properly calculate local deformations and for adapting the
time step based on the effective local stiffness. In both cases,
dVC maintains an active constraint set, which contains the
distance and normal information for all geometric feature
pairs that could come into contact during the ensuing time-
step. This required a modification to the PQP collision detec-
tion [7] to determine all potential contact points, their relative
connectivity, and the depth of penetration (for compliant
models).
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C. Complementarity Problem Solver

For simulation, a solution of the continuous-time model
given by equations (1-5), is approximated at specific times
by a time-stepping method. Replacing time derivatives by
variable differences divided by the time step and after
some algebraic manipulation, one arrives at a family of a
time-stepping subproblems in the form of complementarity
problems [8]. One possible formulation as a mixed linear
complementarity problem (mixed LCP) is presented in the
next section. dVC has implemented a wrapper plugin that
uses the well-known PATH solver [5], [9] to solve the
subproblems. In addition to solving the standard LCPs, the
PATH solver can also solve mixed linear and nonlinear
complementarity problems. PATH is closed source, but has
a freely downloadable binary available from [10].

IV. TIME-STEPPING FORMULATIONS

We briefly discuss the development of time-stepping algo-
rithms. The superscript ¢ denotes the value of the appropriate
variable at time ‘. The dynamic equations of motion (1) are
discretized using an implicit, one-step scheme!':

My = My b (WA + WA+ XL,L) (6)

¢ = ¢+ttt (7

The normal contact condition equation (3) can be linearized
as follows:

ot ot
9 1t

where p, = h,, Aq = ¢t — ¢ and At = h. Note that
Wg = 052&’ for a € n, f.

In the plane, Coulomb’s Law at a contact can be written
as two linear complementarity conditions. Collecting the two
conditions for all the contacts yields the following pair of

conditions:

0<pitt Lyf+ At >0 (8)

) 4 b) 4
0<pttt 1 Bt Wi  Winis0 ()

0q ot
0 S O_Z-'rl L Upﬁ-'rl _ ETngrl Z 0 (10)
where pr = hX, U is a diagonal matrix containing the

coefficients of friction U = diag(u1, ..., fin, ), E is a block
diagonal matrix, F = diag(ey, ..., e, ) with e; given as a
column vector of length 2 with both elements equal to 1,
and o is the vector of sliding speeds at the contacts.

Equations (6,8,9,10) represent a mixed LCP that can be
written in compact form as:

0 M W, Wy 0] [ [My'Ehf

£ 4

s I L R P B
pitHl T WwE o0 0 E||pit dut
sttt 0 U —-ET 0] [o 0

1D

ISince the tangential direction ¢ is unconstrained, we use the subscript
f where we have introduced slack variables representing both the positive
and negative components of ¢. This means a vector with a f subscript has
a dimension twice as large as its corresponding ¢ vector, and the wrench
matrices have twice as many columns.

2590



/+1 /41
000 I

0< || L |ptt| >0 (12)
8K+1 o.£+1

where p‘*1 = ¢’*1/h. Inserting the value of v**! obtained
in the solution of this mixed LCP into equation (7) yields
the updated value of the system configuration ¢‘+?.

a) Visco-Elastic Contacts: While the above time-
stepping method provides accurate simulation for a large
class of problems, it does not handle well impact dynamics
with restitution or phenomena such as micro-slip. In [3] a
model appropriate for such situations was derived and a time-
stepping method analogous to that above was developed. In
this method, the surfaces near each contact are discretized
and sets of coupled lumped springs and dampers are inserted
between pairs of interior points (in the rigid core of the
body) and boundary points (on the compliant surface of the
body) on the discretized contact patch. The introduction of
the compliant layer on the body surfaces causes the dynamic
equations to become numerically stiff. Consequently, when
contacts exist in the system, the size of the time step must
be reduced significantly, by many orders of magnitude when
the springs are very stiff. In addition, this method requires
the time when unilateral contact first occurs to be determined
accurately. To accommodate these needs, we use an adaptive
time step adjustment developed in [11], which sets the step
size as a function of the derivative of the gap function. These
requirements motivate our philosophy to include a range of
models and time-stepping methods in dVC.

b) 2.5D formulation: The formulation for the 2.5D
model incorporates additional elements corresponding to the
tangential surface frictions and normal friction force vector.

e Mv* + hf

eol _Af Wa We 0 041 Ye | Ot
P _(Wa 0 0 0] iyt Vs
P T 0 0 B [p| T e
2 ot
sttt 0 U —-ET of | D
(13)
Pt Pyt
0< [p] L [pt | 20 (14)
SZ+1 0.€+1

where W; € R3*2ne+3n4 hag two friction directions for each
planar contact and ng directions for each surface contact,

U= wol.p= Uk pak

support points’ normal impulses, and U}, € R? is the matrix
of support point friction coefficients. Lastly, py € R27e+na3,
o € R™*13 and E € R2?7e+3naxne+3 are extended to
incorporate the surface friction.

. The vector pn;, € R3 contains the

V. SIMULATED AND EXPERIMENTAL RESULTS

To illustrate the capabilities of dVC, several example
systems are presented with experimental results. The first
example describes how dVC can be used to help design
dynamical systems with intermittent frictional contacts and
uncertainty in the model. In the second example, dVC
was used to design open loop plans for a planar micro-
manipulation task. In the final example, dVC was used
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to analyze grasping strategies for a planar part; choosing
strategies where success is likely even when “a guaranteed
strategy does not exist” [12].

A. Design of a Part Reorienting Device

This example is taken from a parts feeding applica-
tion [13]. It is a device with a cavity of complex geometry
(as shown in Figure 2) designed to orient a cup-shaped part.
Regardless of the part’s initial orientation in the top chute,
after it falls through the cavity it must enter the lower vertical
chute with its center of gravity down.

Fig. 2. Snapshots of the gravity-fed part in the feeder.

The problem consists of a design parameter space P and
an uncertainty space M. Design parameters are parameters
we have control over (in this case, 12 parameters) that
define the geometry of the device. The uncertainty space
exists because models are not perfect and certain physical
properties (like friction coefficients) are difficult to measure
and predict. The state of the system x(t) was a function of:
t, xg, p, and m, where p € P, m € M and x is the initial
condition. The goal was to find some p € P that works for
all m € M.

The solution approach was to randomly sample P for a de-
sign that was geometrically feasible (motion planning), then
thoroughly sample M to verify the design. The dVC sim-
ulator lends itself nicely to this verification system through
its modular design. Using dVC, a hierarchical algorithm was
written and easily implemented:

1) Verify with geometric model

2) For all m; € M,,, verify with inelastic ST model

3) For all m; € M, verify with SPK model

where the M), uncertainty space consists of the unknown
initial cup orientation and friction coefficients and M adds
the additional unknown parameters arising from the locally
deforming viscoelastic frictional contacts.

This hierarchical planning through the use of dVC allowed
for a significant savings in design time, since the simpler
model could be used to prune away failed designs without
the need of testing with the more accurate, but also more
computationally expensive model. Table II displays the run-
ning times of the verification algorithms under the naive
approach, and our hierarchical approach for the geometric
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and inelastic ST models. We saw of savings of 1462 seconds
using our hierarchical planner because we did not run the
more computationally expensive dynamic model on designs
where no geometric solution existed.

TABLE I
HIERARCHICAL APPROACH TO DESIGN

Naive Verification | Hierarchical Verification
Geometric N/A 603 s
ST 5000 s 2935 s
Total 5000 s 3538 s

B. Needle pushing a planar slider

The second experiment is an assembly problem taken
from a planar micro-manipulation experiment [14]. Figure 3
presents 2 pictures of the experimental setup as seen through
a microscope. The goal in this problem is to find a pushing
path for the needle (labeled probe in figure 3(a)) to push the
block from the initial configuration to a goal configuration
(shown in figure 3(b)). dVC was used to simulate candidate
pushing plans from a space of possible pushing plans to find
one capable of accomplishing the task.

Test Fixture

r

Configuration A

Fig. 3. Images taken from a microscope of the experimental micro part
and assembly. The left image shows the dimensions of the part and the right
image shows the initial (A) and goal (B) configurations.

895 um

Since friction in the plane of motion was important and
inertial forces were an order of magnitude smaller than the
frictional due to dimensions, for this problem we used a 2.5D
quasi-static model, with a position-controlled trajectory of
the needle. The locations of the support points and coef-
ficients of friction were identified through experimentation.
Figure 4 illustrates several frames of simulation. The support
points are the 3 small dark circles inside the peg, and the
lines extending from them are a visualization of the friction
force components resisting the motion of block.

Figure 5 shows a comparison of the y component of the
simulated and experimental trajectories. The path of the peg
determined from the simulated pushing path matches closely
when experimentally verified. The other components of the
trajectory also match closely. The flexibility of dVC allows
us to choose the desired physical model and also to use it as
an open loop path planning tool. For videos of this example
see [15].

C. Probabilistic Grasp Planning

In this example, dVC was used to simulate an earlier
grasping experiment [12]. The goal of the experiment was to
study the probability of success of a given grasping strategy
under uncertainty in the friction forces between the gripper
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(a) Snapshot 1 (b) Snapshot 2
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(c) Snapshot 3 (d) Snapshot 4

Fig. 4. Four screen-shots from the simulated planar micro-manipulation
task. The small dark circles inside the peg are the support points shown
with corresponding tangential friction force vectors.
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Fig. 5. Comparison of the y component of the 2.5D simulated and
experimental trajectories.

and part and between the part and the support surface. The
task is to grasp a planar part with a parallel-jaw gripper.
The part and gripper are shown in figure 6, as well as the
coordinate system used in the simulation. The part is slightly
more than 40 mm in diameter. The midway point between
the tips of the fingers is measured with respect to the center
of the part (Figure 6). The goal is to estimate the probability
of a successful grasp as a function of = and y.

A

Fig. 6. The parameters = and y describe the position of the center point
between the fingertips, relative to the center of the gear.

Similar to the parts reorienting device example, this ex-
ample also contains a large uncertainty space: the location
of the support points of the part, coefficient of surface
friction, and coefficient of gripper friction. The location of
the part in the world was known exactly. Similar to the micro-
manipulation experiment, friction in the plane of motion is
again important, but here we cannot ignore the inertial forces.
For this problem we used a 2.5D dynamic model, with force-
controlled parallel jaw grippers. Then for each (z;,y;) in a
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20mm by 20mm box of initial positions (sampled at Imm
resolution), assign random values to the unknown parameters
and simulate the grasp. Estimate the success probability for
each (x;,y;) pair as the total number of successful grasps
divided by the number of trials. The goal configuration (as
defined in [12]) is when the tips of the fingers lie on the
outer edges of the outer-most teeth.

Figures 7 and 8 illustrate two typical simulation results.
The figures are 2D projections of the 3D histogram of
successful grasps. These figures were created assuming a
fixed support point tripod location on the lock, and selecting
random values for the coefficients of friction in the specified
ranges. Figure 7 is the result for medium surface contact
friction coefficients and medium gripper contact friction
coefficients. Figure 8 is the result for medium surface contact
friction coefficients and high gripper contact friction coeffi-
cients. For the presented results, coefficients of friction from
the medium group range in values between: (0.33, 0.66], and
high: (0.66, 0.99].

resultsMedMed

3D histrogram of succesful grasps

08
7 06
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002 | . . . . . . . . .
0 0002 0004 0006 0008 001 0012 0.014 0016 0018 0.02
X (m)

Fig. 7. 2D map of the 3D histogram of successful grasps for medium
surface friction and medium gripper friction coefficients.

3D histrogram of succesful grasps resultsMedHigh
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Fig. 8. 2D map of the 3D histogram of successful grasps for medium
surface friction and high gripper friction coefficients.

Our initial results agree well with the experimental results
presented in [12]. Current work focuses on developing a
better understanding of the friction coefficient influences,
developing better sampling strategies for the support point
tripod, incorporating other physical models and developing
hierarchical planning techniques similar to example 1.

VI. CONCLUSION AND FUTURE WORK

We presented the first release of our configurable multi-
body simulator, dVC, which is capable of simulating planar
systems with multiple bodies in steady and/or intermittent
unilateral frictional contact. It utilizes a plugin style archi-
tecture, allowing users to vary the collision detection, time-
stepping, and solver methods on a per problem basis. Our
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immediate goals are to continue addressing two-dimensional
manipulation problems. We are working on an order h?
integration scheme [16] and a method that accurately for-
mulates the time-stepping subproblems when the C-space is
not locally convex [17].
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