
Single-Query Motion Planning with Utility-Guided Random Trees

Brendan Burns Oliver Brock

Department of Computer Science

University of Massachusetts Amherst

Abstract— Randomly expanding trees are very effective in
exploring high-dimensional spaces. Consequently, they are a
powerful algorithmic approach to sampling-based single-query
motion planning. As the dimensionality of the configura-
tion space increases, however, the performance of tree-based
planners that use uniform expansion degrades. To address
this challenge, we present a utility-guided algorithm for the
online adaptation of the random tree expansion strategy.
This algorithm guides expansion towards regions of maximum
utility based on local characteristics of state space. To guide
exploration, the algorithm adjust the parameters that control
random tree expansion in response to state space information
obtained during the planning process. We present experimental
results to demonstrate that the resulting single-query planner is
computationally more efficient and more robust than previous
planners in challenging artificial and real-world environments.

I. INTRODUCTION

Random tree expansion is a successful algorithmic ap-

proach to sampling-based single-query motion planning. A

single-query planning problem is defined by two points in

the state (or configuration) space of a robot. A single-query

planner attempts to connect these states by a sequence of

valid transitions through state space. The success of random

tree expansion planners in the single-query planning domain

can be explained by two advantageous characteristics of

random tree expansion: 1) random trees rapidly explore

state space, leading to an effective search for a solution

to the planning problem, and 2) the exploration of state

space can be performed based on control inputs, making the

algorithm applicable to systems that are subject to differential

constraints.

A large number of random tree expansion planners have

been proposed [1], [2], [3], [4], [5], [6] and applied in

challenging domains, ranging from molecular biology [7] to

virtual prototyping [8]. As in all of motion planning, the

performance of random tree expansion planners degrades as

the dimensionality of the state space increases. Consequently,

numerous recent methods improve the performance of tree-

based planning by adapting expansion based on local features

of the state space [9], [10], [11]. These planners leverage the

structure of configuration space to render the exploration of

state space more efficient. Given that the provable difficulty

of motion planning cannot be overcome in the general

setting, leveraging of information contained in a particular

instance of the planning problem is a promising approach to

improving the performance of tree-based planners in high-

dimensional state space.

In this paper we introduce a utility-guided approach to

random tree exploration. The notion of utility has success-

fully been applied in multi-query sampling-based motion

planning [12]. Here it enables effective online adaptation

of the exploration behavior of random tree planners. As our

experimental results indicate, a single-query planning method

based on this approach leads to significant performance

improvements relative to previous tree-based planners. These

improvements become more pronounced as the dimension-

ality of the state space increases.

To achieve these performance improvements, we first

present a compressive algorithmic framework for tree-based

single-query planning. The framework is sufficiently general

to express existing tree-based planners as instantiations. It

also reveals the fundamental parameters that govern the

expansion behavior of random trees. We propose an algorith-

mic approach to controlling expansion behavior by adjusting

these expansion parameters throughout the planning process.

The approach is based on notion of expected utility from

Bernoullian utility theory [13]. Given the state space infor-

mation obtained in previous expansion steps of the planner,

our approach maximizes the expected utility of the next ex-

pansion step. The resulting planning framework directs state

space exploration so that—given the available information—

maximum expected progress towards a solution is made.

II. RANDOM TREE EXPLORATION AND RELATED WORK

We begin by presenting an algorithmic framework for

random tree exploration algorithms. This framework exposes

a set of modular components that are part of all tree-based

motion planners presented in the literature. The framework

will structure our discussion of related work in this section,

but it will also serve as the scaffolding for implementing our

utility-guided random tree planners in Section III.

Tree-based planners explore space by incrementally ex-

panding a tree of state transitions, starting from the initial

and the goal state of the robot. During the expansion phase,

an existing node of a tree is selected for expansion. The

expansion is performed by adding a new node to the tree. The

new node represents a single exploration step. To determine

the node, the algorithm chooses a direction and a distance

for the exploration. After each successful expansion, the

planner attempts to connect the two random trees. If this

connection succeeds, a path is found. Otherwise the expan-

sion continues. This basic algorithmic framework, consisting

of node selection, expansion direction selection, expansion
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length selection, and the connection attempt, is summarized

in Figure 1.

RandomTreePlanner(qstart, qgoal)

1: A = Tree(qstart)
2: B = Tree(qgoal)
3: while ( path not found )

4: q = SelectNode(A)

5: ~d = SelectDirection(A, q)

6: δ = SelectDistance(A, q, ~d)

7: if (Extend(A, q, ~d, δ))
8: if (Connect(A,B))
9: return path

10: Swap(A,B)

Fig. 1. The generalized random tree expansion algorithm

This basic tree-based exploration algorithm identifies four

algorithmic components that determine the expansion behav-

ior of the trees generated by the planner: node selection,

direction selection, distance selection, and connection. All

existing planners can be described by choosing particular im-

plementations for these components. These implementation

choices are summarized in Table I summarizes for several

existing tree-based planners.

One of the first algorithms for random tree planning

is the Z3 [1]. The algorithm grows a tree from start to

goal through a series of randomly selected sub-goals. Paths

connecting nodes in the tree are computed using a local

planner that attempts local obstacle avoidance. This planner

only constructs a single tree.

The most widely used tree-based planners are based on

rapidly-exploring random trees (RRTs). The original RRT-

Connect [3] algorithm uses a Voronoi bias to select expansion

node and direction. More recent research has refined the

Voronoi bias using the (adaptive) dynamic domain [9], [10]

which limits the expansion of nodes near obstacles.

Much additional related work is summarized in Table I.

This table also illustrates that the largest amount of research

has explored the node selection for expansion and, to a

lesser extent, the direction of this expansion. Relatively little

research has examined the role of the exploration length or

the algorithm for connecting growth. The approach proposed

in the next section provides a general approach to the

adaptation of all of the parameters of tree-based exploration.

III. UTILITY-GUIDED RANDOM TREES

We now introduce utility-guided random tree exploration

and present an implementation of a utility-guided single-

query planner.

A. Utility-guided exploration

Let the set E be the set of possible expansions ei for a

given random tree. We would like to choose the expansion

with maximal expected utility, i.e., the expansion step that is

expected to provide maximum progress towards a solution

to the planning problem. If we estimate the utility Utility(ei)
as well as the probability P (ei) that ei succeeds and leads

to an expansion of the tree, we can compute the expected

utility [13] of ei as

ExpectedUtility(ei) = P (ei) Utility(ei).

By always choosing the expansion step with the largest

expected utility, we can maximize progress of the planner.

Of course, we first have to provide estimates for P (ei)
and Utility(ei). The effectiveness of a utility-guided planner

will critically depend on the accuracy of these estimates.

In the context of multi-query planning, our previous work

has shown that even coarse estimates provide significant

performance improvements [19].

In the following we present an implementation of a single-

query planner based on utility-guided tree exploration. The

next four sections describe estimators of utility for the four

main algorithmic components of random tree exploration:

node selection, exploration direction, exploration distance,

and the connection attempt (see Figure 1). These four

utility estimators are invoked sequentially in the respective

functions during the execution of the general algorithm.

We assume that the utility of each step in algorithm is

independent. Section III-F describes how to estimate P (ei)
using a non-parametric model of configuration space. Both

the utility estimators and the configuration space model can

be easily replaced with alternative implementations, which

will be the subject of future investigations.

B. Utility of node for expansion

The first step in random tree expansion selects the node

to be expanded. The utility of selecting a particular node

is tied to the possibilities for meaningful exploration of

configuration space connectivity still possible from that node.

Of course, without a precise understanding of the state of the

configuration space surrounding a node this is impossible to

know. We estimate this quantity to be inversely proportional

to the number of exploration attempts originating from the

node. This estimator predicts high utility for nodes on the

fringe of the tree and a uniform, lower utility for interior

nodes that are far removed from the leaves. By choosing

other estimators for this utility, it is possible to change

the balance between exploration and refinement during tree

growth. An additional benefit of this node selection strategy

is that it can be implemented in constant time, avoiding the

expensive nearest-neighbor queries used by other approaches

such as the Voronoi bias.

C. Utility of expansion direction

Once a node has been selected, a direction for expansion

must be chosen. Because the goal of this expansion is

exploration, the most useful directions for exploration are

those most different from previous explorations originating

from the node. Let D be the set unit vectors ~di representing
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Algorithm Node Selection Expl. Direction Expl. Length Connection # Trees

Z
3 [1] Uniform Random Local Planner Local Planner N/A 1

Ariadne’s Clew Fixed Local Planner Local Planner Local Planner 1
RRT-Connect [14] Voronoi Bias (V.B.) Voronoi Bias Constant Nearest Node 2

DD-RRT [9] DD V.B. DD-V.B. Constant N/A 1
ADD-RRT [10] ADD V.B. ADD-V.B. Constant Nearest Node 2

OB-RRT Voronoi Bias Hybrid Hybrid Nearest Node 2
Blossom-RRT [11] Voronoi Bias All All N/A 1

SBL [6] C-Space Density Uniform Random Shrinking Neighborhood Bridge Node 2
Exp. Spaces [15] Tree density Tree density < Constant < Constant 2

Guided Exp. Spaces [16] Heuristic Heuristic < Constant < Constant 2
Adapt. Single-Query [5] none none none Heuristic 2

RRFT [17] Dyn. or Hist. Based Adapt. Goal Biased < Constant N/A 1

TABLE I

SUMMARY OF TREE-BASED PLANNERS PRESENTED IN THE LITERATURE

previous expansion directions for a node q. The utility of of

some new expansion direction ~d for this node is given by

Utility(~d) =
∑

~di∈D

−success(~di) (~d ·
~di),

where ~d · ~di is the dot product between the two unit vectors,

indicating the cosine of the angle between them. The value

success(~di) is used to bias selection towards directions that

are likely to be unobstructed. In our implementation this

function returns a constant c for directions ~d that resulted

in a successful expansion, and c/2 otherwise. Based on

this function, the planner uses past experience to avoid

subsequent expansions that are likely to be obstructed.

D. Utility of exploration distance

The utility estimators for node selection and direction

selection do not rely on estimates of probability. The proba-

bility in both cases is always one, since every node selection

and every direction selection will always be successful. The

remaining two components of the algorithm, exploration

distance and connection attempt, traverse the state space and

therefore have to consider the probability of this traversal

being successful. A traversal that is unlikely to be successful

has low expected utility.

The remaining two components of the utility-guided al-

gorithm, namely the exploration step during tree expansion

and the attempt to connect the two trees, are performed

in a very similar fashion. However, there is one important

distinction: during exploration the exploration direction is

chosen as described in Section III-C, whereas the expansion

direction during the connection attempt is given by the state

of the other tree. We begin by describing the process of

determining the exploration distance.

At this point, the algorithm has selected a node q and a

direction ~d for the expansion. We now need to determine

a distance δ for this expansion. Assuming that δ has been

determined, the planner then perform collision checks in

increments of ǫ along the expansion direction to validate that

the expansion is valid, until the distance δ. The planner could

determine δ based on the information available at this point

of the planning process. However, it would be advantageous

to determine it incrementally by exploring the state space

along ~d. This will allows us to gather additional information

about the state space in the expansion direction, leading to

improved estimates of utility.

To determine δ, we proceed in increments of α >> ǫ along
~d. At each α increment, we evaluate the expected utility

of that point a′. If this expected utility exceeds a threshold

umin, the algorithm decides to expand to that point and δ
is temporarily set to the distance between q and q′. The

planner now validates the connection between q and q′ in ǫ
increments. This validation obtains more information about

local state space features that help to estimate the utility at

the next α increment along ~d. This process continues until

the utility of q′ is below the threshold or the connection

between two states is invalid.

The planner estimates the expected utility of a particular

point q′ based on the probability of it being collision free

and its utility. The former can be obtained from the state

space model described in Section III-F. To determine the

utility of a point n′, we consider its distance δ to q, the node

being expanded. If this distance is larger than a threshold

δmax, the utility of q′ is zero, otherwise it is identical

to the distance δ itself. The introduction of this cut-off

is motivated in Figure III-D. The exploration step of the

algorithm is intended to move out of the shadow of state

space obstructions so that the connection step (described

next) has an increased chance of successfully connecting the

two trees. If the exploration length is too large, the likelihood

of connecting the two trees is not improved and the cost of

validating the transition becomes very large.

Other researchers have also identified excessively long

exploration steps as problematic for several single-query

planners [14], [20], thus providing support for our choice

of utility function.

E. Utility of connection attempt

Attempting to connect the two trees proceeds in a similar

fashion as the determination of the expansion length. Now,

the state q′ obtained by the expansion step itself is used for
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Fig. 2. An illustration of utility for expansion distance. Expansion beyond
the shadow of the obstacle does not increase the utility of the expansion.

expansion. The expansion direction ~d is given by the direc-

tion towards the closest node of the other tree. The definition

of utility does not include the cut-off, since the connection

step attempts to connect the trees in a greedy fashion. The

expected utility of an increment in the connection attempt

can only become smaller than the minimum threshold umin,

if the probability of n′ being collision-free becomes very

small. Effectively, the connection step proceeds in a greedy

fashion with an α look-ahead based on the state space model.

F. Modeling Configuration Space

Above, we have relied on an estimate of the probability

that a configuration or edge in state space is valid or collision

free. This is accomplished with the use of a non-parametric

model [19]. This model stores the outcome of all state

evaluations in a bag. Based on this information it is able

to make predictions about the state evaluation of previously

unseen states. To make such a prediction for an unseen state

q, we determine the state’s k nearest neighbors stored in

the model. Based on the validity of q’s neighbors and their

distances to q, we can compute a prediction for the validity of

q. It is noteworthy that this predictive, non-parametric model

stores positive and negative state evaluations and is thus

able to leverage all information obtained from previous state

evaluations. Because a Euclidean distance metric has known

problems in high-dimensional spaces, we use an alternate

distance metric proposed by Leven et al. [21] for measuring

the distance between configurations.

IV. EXPERIMENTS

The effectiveness of random tree planning depends on

the planner’s ability to rapidly explore relevant state space.

This ability in turn depends on how well the planner can

adapt the exploration to local features of the state space.

To demonstrate the effectiveness of utility-guided random

tree planning in that regards, we compare its performance

with adaptive dynamic-domain RRT [10], a state-of-the-art

random tree planner (AD-RRT in Figure 4). The adaptive-

domain RRT represents a recent, advanced RRT-based plan-

ner and is well-suited to serve as a comparison. For AD-RRT

we used an adaptive factor of 0.95 and a radius of 20 times ǫ,

as suggested in the original paper. We do not report here on

experiments with the regular RRT algorithm, which in many

cases was unable to solve the planning problems within the

allotted amount of time.

To elucidate the role of utility-guided adaptation of explo-

ration, we employ two different utility-guided algorithms: the

first is a hybrid algorithm that uses the traditional Voronoi

bias for selecting nodes and exploration direction, but picks

expansion distance and connection attempts based on utility

(Vor/Util-RRT). The second algorithm is the fully utility-

guided random tree algorithm described in the previous

section (Util-RRT).

The performance of these three algorithms is compared

in two different types of planning problems. The “bug trap”

(Figure 3), which has recently been identified as a challeng-

ing benchmark for RRT methods [10], [9], serves as the first

planning problem. Whereas previously these bug traps were

only considered in two dimensions, we also consider higher-

dimensional bug traps. In a second set of experiments, we

compare planning performance for reaching tasks on a 14

degree-of-freedom humanoid platform.

A. Bug trap experiments

A bug trap of arbitrary dimension can be specified by a

hyper-sphere shell centered around the origin. The shell is

pierced by an un-capped hyper-cylinder of the same thickness

oriented along the x-axis and extending from the origin to

the edge of the hyper-sphere. If a configuration is within the

width of the shell or the hull of cylinder it is considered

obstructed; otherwise it is free.

Previous work has identified a strong correlation between

the relative size of the bug trap and planner performance [10],

[9]. Bug traps of various relative sizes are shown in Figure 3.

Larger bug traps are much easier to solve than smaller bug

traps because a certain degree of refinement (as opposed to

expansion) has to be achieved to find the narrow passage.

Fig. 3. Bug traps of different sizes (large, medium, small), relative to the
considered configuration space

To evaluate the effectiveness of utility-guided random

trees in adapting exploration to local features of the state

space, we tested all three planners on bug traps of varying

dimensionality (ranging from two to five) and of varying

relative sizes (large, small, medium). In each world, each of

the planners was asked to compute a path between the same

random point inside the bug trap to the same random point

outside the bug trap. The length of time to compute this path

was recorded. The average results for 50 path queries with

50 different random point pairs are shown in Figure 4. For

each experiment we kept track of the average run time (top

row of graphs in Figure 4) of the planners as well as whether

they successfully solved the planning problem (bottom row

of graphs in Figure 4). If a planner did not find a solution to

the planning problem after five minutes, we considered the
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Fig. 4. Average run times (top row) and success rates (bottom row) for different algorithms on large, medium, and small bug traps (relative to the
configuration space size)

DOF AD-RRT Hybrid Vor./Util. RRT Full Utility RRT

2 0.14 (0.21) 0.14 (0.39) 0.17 (0.41)
3 4.06 (9.26) 0.23 (0.23) 0.83 (1.52)
4 8.56 (14.20) 0.37 (0.38) 1.63 (4.12)
5 74.17 (163.92) 19.01 (31.73) 9.79 (21.24)

TABLE II

AVERAGE RUN TIME (STANDARD DEVIATION) FOR LARGE BUG TRAPS

experiment failed. The numerical results for running times

in the case of the large bug trap are shown in Table II.

The experimental results show that utility-guided random

tree planning significantly outperforms the adaptive-domain

RRT planner. The performance improvements become more

pronounced as the dimensionality of the bug trap increases.

The performance improvements also increase as the planning

problem becomes more difficult when the relative size of the

bug trap is reduced. For the medium and small bug traps, the

fraction of successful planning attempts is also improved, in

particular as the dimensionality of the bug trap increases.

In all experiments, the utility-guided random tree planner

never falls below 80% success rate, while the other two

algorithms drop below 10% success rate. The fully utility-

guided planner consistently outperforms the hybrid planner,

further validating the importance of utility-guided expansion.

These results indicate that utility-guided random trees

are more effective than existing planners at adapting the

exploration of state space based on the partial information

obtained about local state space features. As a result, the

utility-guided random tree planner is both more efficient and

more reliable. These attributes are necessary for effective

real-world motion planning.

There are some cases in which the hybrid planner

slightly outperforms the fully utility-guided planner (two-

dimensional large bug trap, three-dimensional medium bug

trap, and two-dimensional small bug trap). This can be

explained by the simplicity of the environment considered

here. The cost of performing a collision check for a bug

trap is very small. We suspect therefore that in these cases

the additional computational cost of determining the utility

exceeds the gains obtained from more effective exploration.

Our real-world experiments in the next section confirm this

hypothesis.

B. Real World Experiments

The experiments in bug trap worlds demonstrate that

utility-guided random tree planning can improve perfor-

mance in carefully constructed, challenging configuration

spaces. From a practical perspective it is important that the

algorithm also improve the performance of planning for real-

world robots. Thus, we examined planner performance in

the context of two related real-world tasks for a 14-DOF

humanoid torso (Figure 5). Both tasks examine the assembly

of pipes in an obstructed environment, modeling an assembly

and service task on the exterior of the International Space

Station. The motion planning problems consist of a start

position with the arms extended on the outside of a box

in which the assembly will take place. The goal position is

inside the box with the pipes oriented and ready for a lower-

level force-controller to orchestrate the final assembly. To

experiment with our motion planner on problems of varying

difficulty, we performed experiments with and without a

lid on the box. Images of the start and goal for both of

these experiments are shown in Figure 5. For each of these

experiments, we performed 50 different requests for the same

path query to planners seeded with different random seeds.

The average run time and standard deviation for each planner

and each task are given in Figure 6.

These results show that utility-guided planning is well

suited to real-world motion planning. The hybrid planner is

nearly twice as fast as existing state-of-the-art techniques.

The entirely utility-guided planner is between two and four

times as fast. The performance improvement of complete

utility-guided planning increases as the complexity of the

problem increases. This demonstrates that in addition to im-

proving run time performance, utility-guided planning scales
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Fig. 5. The humanoid robot Dexter in its start and goal configurations
(left) and enacting a successful motion plan (right)
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Fig. 6. Average run time of various planning algorithms for the 14-DOF
humanoid torso in two different environments

better with respect to the complexity of the underlying prob-

lem. Also of significance are the run times themselves. In a

moderately complex world (the box without the lid) utility-

guided planning has an average run time that is adequate for

planning in slowly changing dynamic environments.

V. CONCLUSION

The computational efficiency of random tree single-query

planners critically depends on their ability to adapt state

space exploration based on local features of state space. If

the information obtained during planning can be effectively

leveraged to guide exploration towards regions relevant to the

path query, the volume of state space that must be explored

is reduced, resulting in more efficient planning.

We have proposed a novel utility-guided single-query plan-

ner. This planner guides the ongoing tree-based exploration

of state space using information about state space obtained

from previous tree expansions. Our planner incrementally

learns how to adjust the parameters of tree-based exploration

based on the structure of state space that is revealed during

the planning process. To achieve this, the planner identifies

expansion steps with maximal expected utility given its

current knowledge of the state space. Thus, the planner uses

available information to maximize expected progress towards

a successful path.

Experimental results in both challenging artificial and

real-world environments indicate that this new utility-guided

planner is faster and more reliable than existing state-of-

the-art random tree planners. The performance improve-

ments over tree-based planners presented in the literature

increase with the complexity of the planning problem and

the dimensionality of the configuration space, indicating that

the benefit of utility-guided exploration increases with the

difficulty of the planning problem.
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