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Abstract— Microrobots experience physical phenomena that
are difficult to model analytically and that are not completely
captured with macro-scale prototypes. In this paper we present
a reconfigurable robotic measurement system to character-
ize the magnetic and hydrodynamic properties of assembled-
MEMS microrobots. The system consists of a powerful perma-
nent magnet that is position controlled with a linear stage. The
magnetic field is accurately characterized. Precision sensors are
used to measure magnetic force as a function of applied field.
The system is first used to validate an existing model for the
magnetic force on a soft-magnetic ellipsoid. Next, the magnetic
force on a soft-magnetic assembled-MEMS microrobot as a
function of the applied field is measured experimentally. Finally,
a vision tracking system is integrated with the setup to measure
the hydrodynamic properties of the microrobot. The coefficient
of viscous friction for the microrobot is obtained experimentally.

I. INTRODUCTION

One approach to wireless control of microrobots is through
externally applied magnetic fields. These untethered devices
could navigate in bodily fluids to enable a number of new
minimally invasive surgical and diagnostic procedures. Prior
work by Yesin et al. [1] demonstrated that assembled-MEMS
microrobots like that shown in Fig. 1 can be wirelessly
controlled in a fluid environment. We are particularly in-
terested in ophthalmic procedures to address disorders such
as retinal-vein occlusion. Ophthalmic procedures will require
the microrobot to navigate a viscoelastic fluid environment
known as the vitreous humor [2]. For precise microrobot
control, we must characterize the behavior of assembled-
MEMS microrobots, being driven by external magnetic
fields, through non-Newtonian (i.e. not purely viscous) fluid
environments.

A common technique employed in microrobot design is to
construct relatively large experimental prototypes, and then
attempt to account for scaling effects. However, using this
methodology, it is difficult to account for all of the important
physical phenomena encountered at micro scales [3], or the
increased difficulty in actually constructing the functioning
microrobot. This makes the transition from large prototype
to actual microrobot a difficult one. We are using an alterna-
tive methodology by designing, constructing, analyzing, and
experimenting on actual assembled-MEMS microrobots.

Prior work in wireless magnetic manipulation has focused
largely on the control of permanent magnets [4]–[8]. Our
microrobot is constructed from soft-magnetic material, and

Fig. 1. An assembled-MEMS microrobot that is 800 µm long and 400 µm
wide. The components are fabricated with electroplated nickel.

consequently, the magnetization of the material is a function
of the applied field. Soft-magnetic materials provide easier
fabrication and increased flexibility in microrobot control.
Researchers have considered the control of soft-magnetic
beads in viscous environments [9], where a spherical shape
greatly simplifies the control problem. A magnetic model
necessary for precise control of a non-spherical soft-magnetic
body has only recently been developed [10].

Measuring the magnetic force on a soft-magnetic body
placed in a magnetic field requires a custom experimental
setup. In addition, we would like to understand the hy-
drodynamic properties of our microrobots in various fluid
environments, including those which are non-Newtonian,
under wireless magnetic actuation. These properties are only
obtained accurately through experiment. In this paper we
describe a custom experimental robotic system to investi-
gate magnetization force and hydrodynamics of assembled-
MEMS microrobots.

II. MEASURING MAGNETIC PROPERTIES

To measure the magnetic force acting on soft-magnetic
microrobots as they move through a magnetic field, we have
constructed a reconfigurable experimental setup, described
in Section II-A. To understand the magnetic force on our
microrobot, we require knowledge of the applied magnetic
field, as well as the gradients in the field. This is discussed
in Section II-B. The experimental setup is used to validate a
known model in Section II-C. Finally, we measure the mag-
netic forces on an assembled-MEMS microrobot in Section
II-D.
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Fig. 2. Linear stage to actuate the magnet in 1-DOF.

A. Experimental Setup

All experiments involve a magnet moving along a single
linear DOF. This component, common to all experiments, is
shown in Fig. 2. We use a powerful Q-40-40-20-N permanent
magnet from SuperMagnete.ch. The dimensions are 40 ×
40 × 20 mm, with the north and south poles on the two
largest faces. The permanent magnet is rigidly mounted to
an assembly with 1-DOF of travel along a linear stage. The
magnet’s displacement along the linear stage is controlled
with a Nanotec ST5709M1208 high-torque stepper motor,
driven by a Nanotec SMC42 current driver. The position of
the magnet is measured with a Novotechnik TR100 position
transducer, with a restoring spring to maintain contact with
the magnet assembly. The position transducer has a travel
of 100 mm. The entire measurement system is interfaced to
a PC through an ELMICRO CardS12 microcontroller that
performs the A/D conversion for the position transducer,
controls the stepping frequency of the motor, and reads in
the two limit switches which determine the end of travel
of the magnet assembly. The microcontroller communicates
with the PC through a serial port. The PC, running the Linux
operating system, reads in user commands, implements the
high-level control system, and collects data. For the remain-
der of this document, this setup will be referred to as the
linear stage.

B. Characterizing the Magnetic Field

To characterize the magnetic field of the permanent mag-
net, we use a GM05 Gaussmeter from Hirst Magnetic
Instruments. First, we measured the field along the dipole
axis of the magnet as shown in the inset in Fig. 3(a). Second,
we measured the component of the field parallel to the dipole
axis, but measured along an axis perpendicular to the dipole
axis and through the center of a side face of the magnet as

Fig. 3. Experimental magnetic field data measured along the dipole
axis (a) and to the side (b) of a Q-40-40-20-N permanent magnet from
SuperMagnete.ch.

shown in the inset in Fig. 3(b). For each set of measurements,
the Gaussmeter was fixed, and the magnet was moved along
its range of travel by the linear stage.

It is desirable to fit a smoothly differentiable function
to the magnetic field data, both for interpolation between
measured values, as well as for the computation of field
gradients, which are important to the generation of force
on a magnetic moment. To model the field of a magnet, we
can use a current loop model, where the dipole is created
by a current loop of radius r with current i, resulting in
a magnetic moment |Γ| = πir2, with the direction of Γ
defined by the right-hand rule [11]. The current model is
most appropriate for modeling magnets whose dipole axis
is the short dimension, as is the case for our magnet. There
is no general analytical model for the field around a current
loop [11], and although a far-field model is available [12],
our permanent magnet has physical dimensions which are
important to the field near the magnet. We can, however,
calculate the magnitude of the field along the axis of the
loop:

|H| = |Γ|
c2π(r2 + |P|2)3/2

(1)

in units of A/m, where P is the vector from the dipole
to the position of interest, and c = 1 (the inclusion of c
will be discussed later). The direction of the field is defined
by the current flow using the right-hand rule. This model
loses validity for permanent magnets when r is large relative
to |P|. Once equipped with a differentiable model of the
magnetic field along the dipole axis, we calculate the gradient
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along the dipole axis as

d|H|
d|P|

= − 3|Γ||P|
c2π(r2 + |P|2)5/2

(2)

Figure 3(a) shows the magnetic-field data along the dipole
axis of the magnet. Note that the left-most data point corre-
sponds to the surface of the magnet. A current loop model
was fit to the measured data using Matlab’s Curve Fitting
Toolbox. The model can be fit accurately (R2 = 0.9999) to
the entire data set with |Γ| = 29.36 A · m2, r = 22.83 mm,
and the center of the current loop located 7.251 mm below
the magnet surface. It is clear from the figure that the fit is
essentially perfect.

As with the field along the dipole axis, we require a
differentiable model for the field to the side of the magnet.
Comparison of (1) with the far-field model presented in [12]
suggests that c = 2 in (1) and (2) may approximate the field
and field gradient to the side of the magnet. Figure 3(b)
shows the magnetic-field data measured to the side of the
magnet. Note that the left-most data point is offset by 2 mm
from the side surface due to the shape of the Gaussmeter
probe. We find that the modified current loop model provides
a fit with R2 = 0.9999 for the sideways data, with the center
of the current loop located at 1.038 cm below the magnet’s
side surface, |Γ| = 23.60 A · m2, and r = 14.04 mm. Again,
it is clear from the figure that the fit is essentially perfect.

C. Validating a Known Model

We have recently developed and experimentally verified
a model for the magnetization of a small, soft-magnetic,
axially symmetric body in an arbitrary magnetic field [10].
This magnetization is the source of magnetic torques and
forces. It has been shown that many shapes can be accurately
magnetically modeled by an equivalent ellipsoid [13], so an
analysis of this shape provides insight into many others. The
long axis of the body is referred to as the “easy axis” because
it is the easiest direction to magnetize the body. A magnetic
torque will tend to align the easy axis of the body with the
applied field H. In this paper, we will only investigate the
case where the easy axis is aligned with the applied field.

Once equipped with a model of the magnetization vector
M in the body from [10], we can compute the force on the
body using the force on a magnetic dipole moment [11]:

F = µ0v (M ·∇)H (3)

Since there is no electric current flowing through the region
occupied by the body, Maxwell’s equations provide that
∇×H = 0. This allows us to express (3), after some
manipulation, in a more intuitive form:

F = µ0v

 M · d
dxH

M · d
dyH

M · d
dzH

 (4)

The first application of the measurement system is to
validate the above magnetization force model. To that aim,
we machined a prolate ellipsoid that is 4.90 mm long and
2.54 mm wide from HyMu 80 (80% Ni, 14.48% Fe, 5% Mo),

Fig. 4. (a) Machined ellipsoid of HyMu 80 that is 4.90 mm long and
2.54 mm wide. (b) The ellipsoid is attached to a plexiglass rod. (c) Setup
to measure force on the ellipsoid. The plexiglass rod hangs the ellipsoid
from a scale over the magnet.

a nearly ideal soft magnetic material. The ellipsoid is shown
in Fig. 4(a). The density of HyMu 80 is 8700 kg/m3, and
the mass was measured as 145.21 mg, giving a volume v =
1.669×10−8 m3. We measured the saturation magnetization
ms of HyMu 80 with a vibrating-sample magnetometer
(VSM) and found ms = 6.163× 105 A/m [10].

The ellipsoid is mounted to a long, thin plexiglass rod (see
Fig. 4(b)) that is hung from an Ohaus Analytica Plus high
precision scale (see Fig. 4(c)). The scale and linear stage
are configured such that the center of the ellipsoid lies on
the measurement axis of interest. To alleviate torque, the
ellipsoid is always oriented such that its easy axis and the
magnet field are parallel (Fig. 4(b) shows only one of two
configurations used).

Figure 5(a) shows the measured magnetization force on
the ellipsoid along the dipole axis, as well as the force
predicted by the model. The position is reported from the
dipole center, so the surface of the magnet corresponds to a
position of 7.251 mm. Figure 5(b) shows the measured and
predicted sideways magnetic force exerted on the ellipsoid.
The side surface of the magnet corresponds to a position of
10.383 mm. We find that the model predicts the force on the
ellipsoid well, for both sets of data. The bend that can be
seen in the plots of the model represents the transition from
unsaturated to saturated magnetization.

D. Microrobot Measurements

The microrobot we consider is made from nickel, which
has a density of 8908 kg/m3, and has a measured mass
of 1.90 mg. It has overall length and width dimensions
of 2.5 mm and 1.25 mm, respectively, and the thickness
of the individual components is 0.05 mm. The volume of
the microrobot is calculated using the mass and density as
2.13 × 10−10 m3. We measured the magnetization of the
microrobot along its long axis with a VSM [14] and the
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(a)

(b)

Fig. 5. Predicted and measured force (a) when approaching the ellipsoid
along the dipole axis of the magnet and (b) when approaching the ellipsoid
sideways. The inset illustrates the experimental setup, drawn with 1:1 scale
to the data.

data is shown in Fig. 6. The saturation magnetization was
measured as ms = 4.444× 105 A/m.

Next, we measure the forces that the magnet exerts on the
assembled-MEMS microrobot. The microrobot is mounted
on a plexiglass rod, as shown in Figs. 7(a) and 7(b), which
is attached to the force transducer. The magnetic force is
measured with a capacitance-based Neonics force transducer
instead of the scale. The setup was modified as shown in Fig.
7(c). To precisely position the microrobot, the force trans-
ducer is mounted to an MP-285 Motorized Micromanipulator
from Sutter Instrument. During the measurements, the long
axis of the microrobot is always aligned with the field.

Figure 8 shows the magnetization forces measured on the
microrobot. The system provides force data with a desirable
signal-to-noise ratio for microrobots at this scale. The curves
are qualitatively similar to the ones of the ellipsoid, but the
values are orders of magnitude smaller. This force data is
utilized in Section III-B.

III. MEASURING HYDRODYNAMIC PROPERTIES

In order to understand the relationship between applied
magnetization force and microrobot velocity, we must un-
derstand the hydrodynamic properties of the microrobots.
A microrobot in a fluid environment will likely operate at

Fig. 6. VSM magnetization data of the microrobot along its long axis. The
microrobot exhibits some hysteresis at low applied fields.

(a) (b)

(c)

Fig. 7. Assembled-MEMS microrobot attached to plexiglass rod for
force measurement (a) along the dipole pole axis and (b) during sideways
measurements. The microrobot is 2.5 mm long and 1.25 mm wide. (c) Setup
to measure magnetization forces on the microrobot.

low Reynolds number, where inertial effects are negligible
and viscous effects dominate. At low Reynolds number,
the microrobot can be assumed to instantaneously reach its
terminal velocity, where viscous forces balance the applied
magnetic forces [15]. It is possible to analytically determine
the hydrodynamic properties of very simple shapes, such as
ellipsoids, but we would like to accurately determine the
hydrodynamic properties of assembled-MEMS microrobots.
For this purpose, we have constructed an experimental setup
to measure these effects.

A. Experimental Setup

The microrobot is placed in a fluid-filled vial, as shown in
Fig. 9. The position of the microrobot is then tracked with
two Basler A602f digital cameras, oriented orthogonally to
one another. The magnet is located directly above the vial.
The position of the magnet is controlled vertically using the
linear stage. A typical screen capture of the computer vision
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(a)

(b)

Fig. 8. Measured magnetization force on the assembled-MEMS microrobot
(a) when approaching the microrobot along the dipole axis of the magnet
and (b) when approaching the microrobot sideways. The inset illustrates the
experimental setup, drawn with 1:1 scale to the data.

system tracking a microrobot is shown in Fig. 10. The system
tracks the center of the microrobot, as indicated in the figure.
The microrobot appears dark compared to the surrounding
environment, making the tracking robust to lighting levels.
For all hydrodynamic experiments in this paper, the vial is
filled with AK1000 silicon oil. This oil has a reported density
of 970 kg/m3 and viscosity of 0.98 Pa s at 25 ◦C. The
temperature of the oil during the experiments was 26.9 ◦C.

B. Microrobot Measurements

Figure 11 shows three runs of data for the microrobot
falling under its own weight in silicon oil. For each run, the
microrobot is released at the surface of the oil in the vial, and
falls to the bottom. The robot tends to right itself in the fluid,
so that its long axis is vertical. The data shows how negligible
the inertia of the robot really is. The velocity is very constant,
and there is no perceived period of acceleration. The data
also provides an indication of the noise level in the vision
tracking system. In total, six runs of data were collected, with
an average velocity of 1.1186 mm/s and a standard deviation
of 0.0123 mm/s.

In the next experiment, the microrobot was positioned at
the bottom of the vial. The vial was positioned underneath
the magnet so that the long axis of the microrobot was

Cameras

Magnet

Microrobot
in Fluid

Fig. 9. Experimental setup for measurement of hydrodynamic properties.

Fig. 10. Screen capture of the computer vision system tracking the position
of the microrobot in the vial from two sides.

aligned with the dipole axis of the magnet, yet the attractive
magnetic force did not overcome gravity. The gap between
the magnet surface and the bottom of the vial was reduced to
a constant distance of 60 mm so the microrobot was pulled
toward the magnet. Figure 12(a) shows three runs of distance
plotted against time. The closer the microrobot gets to the
surface, the stronger the force acting on the microrobot.
In Fig. 12(b) the force on the microrobot measured in
Section II-D is plotted against velocity, which is obtained
by numerical differentiation of the position data with respect
to time.

The above data sets are used to compute the coefficient of
viscous friction of the microrobot. At low Reynolds numbers,
we expect a linear relationship between velocity and viscous
drag force in Newtonian fluids [16]:

F = bV (5)

Again, we assume that inertial effects are negligible, such
that magnetic forces instantaneously balance viscous forces.
We fit a line to the data in Fig. 12(b) through the origin. Note
that the measurement obtained from Fig. 11 is represented
by a single data point (a square) in Fig. 12(b), and it shows
agreement with the linear model. From Fig. 12(b), we com-
pute the coefficient of viscous friction for the microrobot, for
motion parallel to the long axis, as b = 1.41 × 10−2 N · s/m.
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Fig. 11. Three runs of experimental data for microrobot falling under its
own weight in AK1000 Silicon Oil.

(a)

(b)

Fig. 12. (a) Three runs of distance plotted against time when the microrobot
is pulled towards the magnet through AK1000 Silicon Oil. (b) Force plotted
against velocity for all data points of postiton data.

IV. CONCLUSIONS AND FUTURE WORK

We have presented a system to measure the magnetic and
hydrodynamic properties of assembled-MEMS microrobots
in an automated way. Using the system, we determined the
magnetic force on a microrobot as a function of the applied
magnetic field. We also determined the coefficient of viscous
friction of the microrobot in a Newtonian fluid.

We will continue to characterize the magnetic force and
viscous drag properties of assembled-MEMS microrobots
using the experimental setup presented here. So far we have
only investigated the properties of the microrobot in Newto-
nian fluids. However, we are particularly interested in how
microrobots will behave inside the eye. The vitreous humor
is the viscoelastic fluid that fills the cavity of the eye [2], and
we are currently working towards a simple and inexpensive
artificial vitreous humor, based on recent research results
[17], that will act as an experimental environment for our
microrobots. The experimental system described in this paper

will then be used to characterize the hydrodynamic properties
of microrobots in the artificial vitreous. These properties can
then be used for precise microrobot control in the eye.
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