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Abstract— We present a sampling-based path planning and
replanning algorithm that produces anytime solutions. Our al-
gorithm tunes the quality of its result based on available search
time by generating a series of solutions, each guaranteed to be
better than the previous ones by a user-defined improvement
bound. When updated information regarding the underlying
search space is received, the algorithm efficiently repairs its
previous solution. The result is an approach that provides low-
cost solutions to high-dimensional search problems involving
partially-known or dynamic environments. We discuss theoret-
ical properties of the algorithm, provide experimental results
on a simulated multirobot planning scenario, and present an
implementation on a team of outdoor mobile robots.

I. INTRODUCTION

Path planning for real-world robotic systems involves
overcoming several challenges. In particular, the informa-
tion available concerning real-world environments is usually
incomplete or imperfect, the time available for planning is
usually limited, and the environment itself is often dynamic.
These challenges are further exacerbated by the complex-
ity of the search spaces commonly involved (for instance,
when planning for complicated robotic vehicles or teams of
vehicles).

For lower-dimensional problems involving fairly simple
single robots, several discrete planning approaches have been
devised for coping with these challenges. These algorithms
plan over graph-based representations of the search problem
and use heuristics to focus their search towards the most
promising areas of the search space. Two very common such
algorithms for planning in known environments are Dijkstra’s
search [1] and A* [2].

To cope with imperfect information or dynamic envi-
ronments, efficient replanning variants of these algorithms
have been developed that correct previous solutions based
on updated information [3], [4]. These algorithms main-
tain optimal solutions for a fraction of the computation
required to generate such solutions from scratch. To cope
with very limited deliberation time, suboptimal or anytime
variants of these algorithms have been developed. These
algorithms generate an initial, possibly highly-suboptimal
solution very quickly, then, in the case of the anytime
approaches, concentrate on improving this solution while
deliberation time allows [5], [6]. To deal with both features,
an anytime, replanning algorithm called Anytime Dynamic

A* has recently been developed that effectively provides both
anytime and replanning capabilities [7].

However, all of these discrete approaches are limited by
their reliance on an underlying search graph that encodes
the search space (either explicitly or implicitly). For very
high-dimensional problems such as those we address in this
paper, generating and planning over such a graph can become
prohibitively expensive. Further, they all rely on heuristics
to guide their searches; in many high-dimensional problems,
generating useful heuristics may not be possible.

In response to these limitations, researchers have devel-
oped sampling-based analogs that generate solutions in very
high-dimensional search spaces. One of the most widely-
used of these algorithms is the Rapidly-exploring Random
Tree (RRT) algorithm [8]. This algorithm grows a search tree
out from an initial position in the search space (the initial
configuration) and uses random sampling of the search space
to bias the growth of this tree towards unexplored regions.
Consequently, it explores the space extremely efficiently and
can be easily modified to focus efforts towards a particular
goal configuration. Because randomization is used to grow
the tree, the algorithm copes well with both very high-
dimensional search spaces and very large branching factors.

Unfortunately, the RRT algorithm provides no replanning
capability and, although it generates feasible solutions, it
cannot control or improve over time the quality of these
solutions. Recently, two modified versions of this algorithm
were developed with these individual features [9], [10]. Yet
some of the most interesting real-world problems are those
that are both dynamic or involve partially-known information
(and thus require replanning) and involve complex, non-
uniform cost search spaces (so that anytime performance has
great benefit).

In this paper, we present a sampling-based planning algo-
rithm that provides both anytime and replanning capabilities.
Our algorithm, Anytime Dynamic RRTs, continually improves
its solution while deliberation time allows, and efficiently
repairs its solution when new information is received. It is
thus ideally suited to several real-world problems involving
complex search spaces and partially-known information.

We begin by introducing our motivating problem of
constrained exploration. We then review the original RRT
algorithm and two recent algorithms, Dynamic RRTs and
Anytime RRTs, that provide replanning and anytime per-

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

WeD11.2

1-4244-0602-1/07/$20.00 ©2007 IEEE. 1310



formance. We then introduce our novel algorithm, Anytime
Dynamic RRTs, and provide intuitive examples and experi-
mental results demonstrating its benefits in both simulation
and on a team of outdoor robotic vehicles.

II. COORDINATED MOTION PLANNING

Consider a team of robots tasked with exploring key areas
in some outdoor environment. For safety or communication
reasons, assume we require that the robots always remain
within line-of-sight communication of each other at all times.
This is known as the Constrained Exploration Problem
[11]. In order to successfully complete such a task, the
actions of each robot need to be tightly-coordinated. When
planning for such tight-coupled teams, it is often necessary
to plan actions for the entire team at once, rather than each
robot individually. As the number of robots in the team
increases, this becomes an increasingly complex planning
problem. In fact, both the dimensionality and the complexity
of the search space quickly overwhelm discrete planning
algorithms. Sampling-based approaches are attractive alter-
natives, since they are not nearly as encumbered by complex,
high-dimensional search spaces.

III. SAMPLING-BASED PLANNING

Sampling-based planning algorithms search through the
continuous search space or configuration space rather than
a discrete representation of the space, and they use intelli-
gent sampling techniques to efficiently explore large search
spaces. In particular, the RRT algorithm is very effective for
planning paths through high-dimensional search spaces, and
has been applied to a wide range of motion planning tasks
[8], [12].

A. Rapidly-exploring Random Trees (RRTs)

The standard RRT algorithm is shown in Figure 1. This
algorithm grows a search tree out from the initial robot
configuration qstart towards the goal configuration qgoal. To
grow the tree, first a target configuration qtarget is randomly
selected from the configuration space using the function
ChooseTarget. Then, a NearestNeighbor function selects the
node qnearest in the tree closest to qtarget. Finally, a new
node qnew is created in an Extend function by growing
the tree some distance from qnearest towards qtarget. If
extending the tree towards qtarget requires growing through
an obstacle, no extension occurs. This process is repeated
until the tree grows to within some user-defined threshold
of the goal (line 3). A very nice property of this method of
construction is that the tree growth is strongly biased towards
unexplored areas of the configuration space. Consequently,
exploration occurs very quickly. The RRT algorithm can also
be significantly more efficient if the search is focused towards
the goal (lines 10 and 11): with probability 1− p, qtarget is
randomly selected; with probability p, qtarget is set to the
goal configuration.

InitializeRRT(rrt T )

1 T .add(qstart);

GrowRRT(rrt T )

2 qnew = qstart;

3 while (Distance(qnew , qgoal) > distance-threshold)

4 qtarget = ChooseTarget();

5 qnearest = NearestNeighbor(qtarget, T );

6 qnew = Extend(qnearest, qtarget, T );

7 if (qnew 6=null)

8 T .add(qnew)

ChooseTarget()
9 p = RandomReal([0.0, 1.0]);

10 if (p < goal-sampling-prob)

11 return qgoal;

12 else

13 return RandomConfiguration();

Main()

14 InitializeRRT(tree);

15 GrowRRT(tree);

Fig. 1. The RRT Algorithm.

B. Dynamic RRTs

The standard RRT algorithm requires perfect initial infor-
mation concerning the environment; if new information is
received after it has generated its original plan, a new plan
has to be generated from scratch. In mobile robot navigation
scenarios involving real-world environments, such infor-
mation is received frequently (e.g. from onboard sensors)
and replanning from scratch can be very computationally
expensive and in many cases intractable.

A recent extension to the RRT algorithm allows efficient
repair of the tree when changes are made to the configuration
space [9]. Known as Dynamic RRTs, this approach first
generates a standard RRT from an initial configuration to a
goal configuration. When changes occur to the configuration
space, all the parts of the RRT that are invalidated by these
changes are trimmed from the search tree. The remaining
tree is then grown out until the goal configuration is reached
once more.

By maintaining as much as possible of the previous tree
when changes are observed, the Dynamic RRT algorithm
generates new solutions much more efficiently than replan-
ning from scratch. For more details on this algorithm, its
application to planning in partially-known environments, and
its advantage over competing approaches, see [9].

C. Anytime RRTs

One of the most significant limitations of single-shot
sampling-based algorithms is their inability to incorporate
cost into their searches in order to produce high quality
solutions. As a result, they can often produce very expensive
or suboptimal paths. Another RRT-based algorithm known as
Anytime RRTs addresses this limitation [10]. Anytime RRTs
generate a series of RRTs, with each RRT after the first using
novel search techniques to produce a new solution that is
guaranteed to be less expensive than any of the previous
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solutions by a user-defined improvement factor εf . Thus, a
valid solution is returned as quickly as by the standard RRT
algorithm, but the quality of this solution is then improved
while deliberation time allows. The resulting algorithm pro-
vides similar benefits to discrete anytime algorithms but
plans over much larger, higher-dimensional search spaces.

The Anytime RRT algorithm first generates an initial RRT
without considering costs. It then records the cost Cs of the
solution returned by this RRT. Next, it generates a new RRT
and ensures that the solution produced by this new RRT is
better than the previous solution by limiting the nodes added
to the tree to only those that could possibly contribute to a
solution with a lower overall cost than Cs. This cost bound
Cs can also be multiplied by some factor (1 − εf ), where
0 ≤ εf < 1, to ensure that the next solution will be at
least εf times less expensive than the previous solution. The
algorithm then updates the cost bound Cs based on the cost
of the new solution and repeats the process until time for
planning runs out.

This algorithm has a number of nice properties, such
as guarantees on the improvement in path quality between
successive solutions. It also produces much better solutions
than standard RRTs in non-uniform cost search spaces and
has been applied to the constrained exploration problem in
known environments [10].

IV. ANYTIME DYNAMIC RRTS

The Anytime RRT algorithm generates a series of improv-
ing RRTs and the Dynamic RRT algorithm efficiently repairs
RRTs when changes are made to the configuration space.
Path planning in the real world, however, often requires
an algorithm with both features. Such an approach would
provide a comprehensive sampling-based framework capable
of dealing with the most challenging, most realistic real-
world problems, where we have imperfect information and
limited time, and we are concerned with generating and
executing high quality solutions.

To this end we have developed an algorithm called Any-
time Dynamic Rapidly-exploring Random Trees (Anytime
Dynamic RRTs) that couples these approaches. First, the
Anytime RRT algorithm provides the best solution possible
within the time available for planning. This solution is then
executed by the agent or team, and can be further improved
upon by the Anytime RRT algorithm while the agent or
team is in motion. When changes are observed in the en-
vironment, these changes may invalidate the current solution
path being executed. However, by maintaining the search tree
associated with this solution, the Dynamic RRT algorithm
can efficiently repair the tree and generate a new solution.
Once this new solution has been produced, the Anytime RRT
algorithm can improve it, and the entire process can continue
until the goal is reached.

This coupling has significant advantages. First, we can
take advantage of the low-cost solutions generated by the
Anytime RRT algorithm, and can continually improve over
time the quality of the solution being executed. Second, when
changes are observed, rather than having to start the entire

anytime process over from scratch, we can maintain the
current low-cost solution and repair it. This results in a much
better solution than we would otherwise have generated from
scratch, and since we are only repairing the portions of the
current solution that have been invalidated, this new solution
is generated very quickly. Further, since we are continually
improving the solution by generating new trees through
the configuration space, the overall amount of trimming
required when new information is received is minor. Thus,
by combining both anytime and replanning capabilities, we
provide better solutions than either approach alone, and we
provide these solutions with less computation.

An example application of the approach to a single agent
planning problem is shown in Figure 2. In this example, the
agent plans an initial path in an anytime fashion, then as it
is about to traverse its least-costly path, it observes a new
obstacle that invalidates this path. It then updates its solution
to take into account this obstacle. As with the Dynamic RRT
algorithm, it can be beneficial for Anytime Dynamic RRTs to
search backwards from the goal configuration so that the tree
can be efficiently trimmed when new information is received
in the vicinity of the agent or team of agents.

Pseudocode of the Main function of the Anytime Dynamic
RRT algorithm is provided in Figure 3. Two trees are used:
the tree T is used to construct improved solutions over
time and the tree R is used to store the best solution
generated thus far. When changes take place, the affected
nodes in R are trimmed and R is repaired to generate a new
solution. The GrowRRT function used during the anytime
planning phase (line 4) and within the RegrowRRT function
is the anytime version used in the Anytime RRT algorithm.
This combined algorithm has number of nice theoretical
properties, including bounds on the cost of the improved
solutions, which are discussed in [13].

V. ANYTIME DYNAMIC RRT RESULTS

We have applied Anytime Dynamic RRTs to constrained
exploration in non-uniform cost, partially-known environ-
ments and in environments with dynamic elements (such
as moving obstacles or other agents). To analyse its per-
formance, we simulated traverses for a team of 3 agents
navigating across a series of random environments containing
both communication obstacles and areas of non-uniform
traversability cost. During execution, new information was
received concerning the environment and the solutions were
updated. We describe three different testing scenarios below.

A. Constrained Exploration in Partially-known Environ-
ments

For performing constrained exploration in partially-known
environments, initial paths were planned for the team through
these environments that incorporated all initial information
available to the team. During execution, the agents ob-
served navigation obstacles that were randomly placed in the
environment. When these obstacles invalidated the current
solution, the team was forced to generate a new solution. We
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(a) (b) (c)

Fig. 2. Anytime Dynamic RRTs used for single robot path planning. The
robot begins at the bottom of the environment and plans to its goal, the
square at the top. Shaded regions represent higher-cost areas to traverse;
black regions represent obstacles. The top images show the trees while the
bottom images show the solution paths. (a) Initial RRT generated without
cost consideration. (b) Final RRT generated in initial planning time, using
costs of previous solutions and nodes of the current tree to bias the growth
of the current tree. (c) A new obstacle is discovered in front of the agent,
invalidating the final solution path and a portion of the search tree. The tree
is repaired to account for the new obstacle and a new solution is generated.
The majority of the low-cost solution remains unaffected.

compared Anytime Dynamic RRTs to the original RRT algo-
rithm, Dynamic RRTs, and Anytime RRTs. Each approach
was allowed to run for a total initial planning time of 10
seconds (on a 1.5 GHz Powerbook G4), and each individual
RRT was allowed to take up to 2 seconds. During execution,
each approach planned from a configuration three steps ahead
of it on the current path. The time taken to traverse each
edge was set to 0.5 seconds, so that a total of 1.5 seconds
was available for planning before the best solution was taken
and the first three steps in this path were executed. Figure 4
plots the average cost of the team traverses following each
of the four approaches. For these experiments, the Anytime
Dynamic RRT and Anytime RRT approaches used an εf

value of 0.1. When the solution was invalidated due to newly-
observed obstacles, the Anytime RRT approach reset its Cs,
db, and cb values, while the Anytime Dynamic RRT approach
increased these values by an amount that was dependent on
how much of the search tree and solution was affected. For

Main()
1 T.db = 1; T.cb = 0; T.Cs = ∞;

2 forever

3 ReinitializeRRT(T );

4 T.Cn = GrowRRT(T );

5 if (T.Cn 6= null)

6 R = T ;

7 PostCurrentSolution(R);

8 R.Cs = T.Cs; R.db = T.db; R.cb = T.cb;

9 T.Cs = (1− εf ) · T.Cn;

10 T.db = T.db − δd;

11 if (T.db < 0)

12 T.db = 0;

13 T.cb = T.cb + δc;

14 if (T.cb > 1)

15 T.cb = 1;

16 for each new obstacle o in configuration space

17 InvalidateNodes(R, o);

18 if significant obstacle changes were observed

19 increase R.Cs, R.db, and T.db; decrease R.cb and T.cb;

20 if solution path of R contains an invalid node

21 RegrowRRT(R);

22 PostCurrentSolution(R);

23 T.Cs = (1− εf ) · R.Cn;

Fig. 3. The Anytime Dynamic RRT Algorithm: Main function

details, see [13]. We employed Euclidean distance as the
heuristic used by the algorithm and our available extensions
were straight-line segments for each agent.

By combining the anytime capability of Anytime RRTs
and the replanning capability of Dynamic RRTs, Anytime
Dynamic RRTs provide better solutions than either of these
approaches, and much better solutions than the standard
RRT algorithm. Both Anytime RRTs and Anytime Dynamic
RRTs outperform the non-anytime approaches because they
take the cost of the solution into account when searching.
Further, they use information from previous searches to help
guide and restrict the next search towards cheaper solutions.
Anytime Dynamic RRTs produce lower-cost traverses than
Anytime RRTs because they cope with new information
much more intelligently. Rather than resetting the anytime
parameters and generating a brand new solution from scratch,
Anytime Dynamic RRTs maintain the current low-cost solu-
tion and repair just the portions of this solution that have
been affected by the new information. This means both
that Anytime Dynamic RRTs produce a valid solution more
efficiently than Anytime RRTs and that the solution produced
is better.

B. Constrained Exploration in Dynamic Environments

We have also applied the Anytime Dynamic RRT approach
to constrained exploration in environments containing dy-
namic elements, such as moving obstacles or other agents.
To compare the relative performance of Anytime RRTs
and Anytime Dynamic RRTs against standard RRTs, we
had each approach plan traverses for a team of 3 agents
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Fig. 4. Anytime Dynamic RRT results from our 3 agent constrained
exploration experiments in partially-known environments.

navigating across a series of random environments containing
communication obstacles, areas of non-uniform traversability
cost, and dynamic obstacles. These traverses were similar to
those performed above except that the environment now con-
tained dynamic obstacles and new information was received
concerning these dynamic obstacles as the team executed
its traverse. We left Dynamic RRTs out of our comparison
because they were already shown to be far less effective than
Anytime Dynamic RRTs. For our experiments, we created
20 different environments containing randomly generated
communication obstacles and high-cost areas, and for each
of these environments we used 10 different collections
of dynamic obstacles, each having a randomly-generated
trajectory. Each of these collections contained 8 dynamic
obstacles whose trajectories were unknown and needed to be
estimated by the team, and 4 dynamic obstacles for which
fairly accurate trajectories were initially provided to the team.

As the team traversed through the environment, updated
information on the actual trajectories of both types of dy-
namic obstacles was received. Each of the dynamic obstacles
with unknown trajectories changed their course 20 times,
and each of the other dynamic obstacles updated their full
trajectories 4 times. Whenever new information was received
concerning any of the dynamic obstacles, each planning
approach checked whether this information invalidated its
current solution. If so, a new solution was generated, with
each approach using its associated method for producing this
solution.

Each approach was allowed to run for a total initial
planning time of 20 seconds (on a 1.5 GHz Powerbook
G4), and each individual RRT was allowed to take up to 10
seconds. As in our first set of experiments, each approach
planned from a configuration three steps ahead of it on the
current path.

Figure 5 plots the average cost of the team traverses
and shows that Anytime Dynamic RRTs maintain their
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Fig. 5. Comparative results from our 3 agent constrained exploration
experiments in dynamic environments.

performance edge over the other approaches when dynamic
obstacles are added to the environment. Although new in-
formation regarding the trajectories of these obstacles can
affect states in the configuration-time space that are widely-
separated in terms of distance, Anytime Dynamic RRTs are
still able to repair the solution when this new information is
received more efficiently than regenerating a series of new
solutions from scratch.

C. Implementation on Outdoor Vehicles

We have also implemented Anytime Dynamic RRTs on
a team of 3 autonomous E-gator vehicles performing con-
strained exploration in partially-known outdoor environ-
ments. As in simulation, the team began with a prior map
of the environment that contained a collection of commu-
nication obstacles and areas of non-uniform traversal cost.
The Anytime Dynamic RRT algorithm used this prior map
to plan an initial path from the team’s starting position to
its desired goal position. As the agents traversed their paths,
they observed with onboard lasers any navigation obstacles
such as trash cans and bushes that were not in their prior
map. When these obstacles interfered with their current
solution paths, the team’s path was repaired to account for the
obstacles. This path was also continually being improved in
an anytime fashion throughout the team’s traverse. Figure 6
shows a sequence of images from the team navigating across
an 80× 100 meter environment.

VI. CONCLUSION

In order to provide high quality solutions when deliber-
ation time is limited and the environment is imperfectly-
known, we have combined the Anytime RRT algorithm with
the Dynamic RRT algorithm to create a sampling-based any-
time, replanning algorithm which we call Anytime Dynamic
RRTs. The Anytime Dynamic RRT algorithm both improves
and repairs the solution over time, and is particularly well-
suited to path planning in high-dimensional search spaces for
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Fig. 6. Anytime Dynamic RRTs used for constrained exploration by a team of 3 vehicles in an outdoor environment. The left-most images show the
initial positions of the vehicles and the prior map used by the team. The top-left image shows the map, along with the agents (the red, green, and blue
arrows), the communication obstacles (in red), the high-cost regions (in dark grey), the goals for the agents (the red circles), and the line-of-sight links
across the team (in yellow). The bottom-left image shows the center (green) vehicle in the foreground and the right-most (blue) vehicle in the background.
The center images show the team after the left-most (red) vehicle has detected an obstacle in its path and the solution for the team has been repaired. The
right-most images show the end of the run, with the top image of the pair showing the full paths traversed by the vehicles and the obstacles observed in
the environment.

teams of agents navigating partially-known or dynamic envi-
ronments. We have presented results highlighting its benefits
in both simulation and from a team of 3 robotic platforms
used to perform constrained exploration in partially-known
outdoor environments.

Approaches that improve and repair their solutions over
time can be extremely useful for complex planning prob-
lems involving imperfect information. The results provided
here show this holds true for the Anytime Dynamic RRT
algorithm. By extending RRTs to exhibit both anytime and
replanning behavior, Anytime Dynamic RRTs efficiently pro-
duce low-cost solutions to very high-dimensional planning
problems in partially-known or dynamic environments.
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